

REGIONALIZACIÓN Y CORRELACIONES DE PARÁMETROS HIDROLÓGICOS

BANCO NACIONAL DE DATOS HIROLÓGICOS SISTEMA DE GESTIÓN DE RECURSOS HÍDRICOS

AUTORIDADES

Arq. GRACIELA MUSLERAMINISTRA DE VIVIENDA, ORDENAMIENTO TERRITORIAL
Y MEDIO AMBIENTE

Arq. RAQUEL LEJTREJER SUBSECRETARIA

Dr. GERARDO SIRIDIRECTOR GENERAL DE SECRETARÍA

Ing. DANIEL GONZÁLEZ
DIRECTOR NACIONAL DE AGUAS

ÍNDICE

PRESENTACIÓN	
1 INTRODUCCIÓN	1
2 INFORMACIÓN UTILIZADA	3
2.1 Información hidrométrica	
2.2 Información meteorológica	5
2.3 Información de capacidad de almacenamiento en suelos	
3 INTERPOLACIÓN DE VALORES ANUALES Y ESTACIONALES	
3.1 Interpolación de la precipitación media anual y cuatrimestral.	11
3.2 Interpolación de la ETP media anual y de verano	12
3.3 Interpolación de los escurrimientos	
4 REGIONALIZACIÓN DE ESCURRIMIENTOS	
4.1 Regionalización de cuencas aforadas en base a APDN	14
4.2 Verificación en base a curvas de frecuencia estacionales	
4.3 Verificación en base a los ciclos anuales de escurrimientos	22
5 - RESUMEN DE PARÁMETROS ESTACIONALES REGIONALIZADOS	

PRESENTACIÓN

A partir de la entrada en vigencia de la Ley N° 18.172 del 31 de agosto de 2007 las competencias de la Dirección Nacional de Hidrografía del Ministerio de Transporte y Obras Públicas (DNH-MTOP) en materia de evaluación, administración y control de los recursos hídricos fueron transferidas al Ministerio de Vivienda, Ordenamiento Territorial y Medio Ambiente, actualmente a cargo de su Dirección Nacional de Aguas (DINAGUA-MVOTMA).

En dicha transferencia están incluidas las responsabilidades del Servicio Hidrológico Nacional y todos sus antecedentes documentales y de información hidrométrica, que abarcan varias décadas de observaciones y estudios hidrológicos.

Desde su anterior ubicación institucional en el MTOP los Departamentos de Administración de Aguas y de Hidrología de la División Recursos Hídricos (DRH) han elaborado las sucesivas ediciones de las publicaciones llamadas "Inventarios de Estaciones Hidrológicas", "Anuarios Hidrológicos" e "Inventarios de Aprovechamientos de Aguas Superficiales". Estas publicaciones son resultado directo de la existencia del "inventario actualizado de los recursos hídricos del país" previsto en el Art. 7 del Código de Aguas. Desde fines de la década del '90 dicho inventario se ha desarrollado en la órbita de la División Recursos Hídricos como un Sistema de Gestión de Recursos Hídricos (SGRH).

Este informe, junto con el titulado "Ciclos anuales y estacionales de parámetros hidrológicos (1980-2004)" que se edita contemporáneamente, continúa una serie de informes temáticos del Departamento de Hidrología orientada a presentar en forma resumida y sistematizada la información hidrométrica contenida en el SGRH y algunas evaluaciones cuantitativas o cualitativas de los principales fenómenos hidrológicos ocurridos en el período.

Para la realización de estos informes ha sido fundamental la participación de los funcionarios del Departamento de Hidrología (Aytes. Juan C. Giacri, Jorge Coo, Loreley Castillo, Luis Machado y Roberto Sánchez) en las actividades de campo y de gabinete necesarias para la recolección, concentración y procesamiento primario de los datos de la red hidrométrica, así como la colaboración de las Oficinas Regionales en apoyo operativo. Pero sobre todo debe agradecerse la existencia de un banco de datos extenso y consolidado a lo largo de varias décadas, fruto de la visión y la dedicación de nuestros antecesores.

Montevideo, marzo de 2012

Ing. Roberto Torres
DIVISIÓN RECURSOS HÍDRICOS

Ing. Rodolfo Chao

DEPARTAMENTO DE HIDROLOGÍA

1.- INTRODUCCIÓN

El "Glosario Hidrológico Internacional" (UNESCO – OMM)¹ define a los recursos hídricos de la siguiente manera:

"Recursos de agua **disponibles** o potencialmente disponibles en cantidad y calidad **suficientes**, en un **lugar** y en un período de **tiempo** apropiados para satisfacer una **demanda** identificable."

Desde esta perspectiva, el desarrollo y aprovechamiento de los recursos hídricos requiere disponer de información confiable sobre el comportamiento hidrológico de las fuentes de agua que se quieren utilizar: ubicación, cuantificación, variabilidad estacional e interanual. Por lo tanto se debe manejar un mínimo de parámetros estadísticos que ayuden a estimar la **disponibilidad** de las cantidades de agua necesarias en el tiempo y en el lugar en los que se las pretende utilizar, en relación a las **demandas** de los usos actuales o potenciales.

Desde temprano el aprovechamiento de los recursos hídricos y su estudio en el Uruguay han sido objeto de atención a impulso de las demandas prevalentes en cada época (navegación, drenaje de tierras inundables, generación hidroeléctrica, riego). En la década del '80 se produce un fuerte impulso, siguiendo los desarrollos a nivel mundial en la valoración de los conceptos de evaluación y gestión de los recursos hídricos.² Con el apoyo de organismos técnicos internacionales se encara el relevamiento sistemático de datos de niveles y caudales cubriendo una buena parte del territorio nacional y de manera independiente de los requerimientos de un tipo de demanda específica.³

La red de observaciones hidrométricas en los principales cursos de agua ha generado desde entonces un volumen de información que permite la realización de estudios hidrológicos tales como balances hídricos o la estimación de valores estadísticos regionalizados para los escurrimientos superficiales.

En particular, en convenio con la Facultad de Ingeniería (UdelaR) se han hecho balances hídricos superficiales mensuales para 16 cuencas del país utilizando información del Servicio Hidrológico y de la Dirección Nacional de Meteorología (período 1980 a 1999) y aplicando modelos conceptuales de precipitación escurrimiento para determinar los ciclos anuales de caudal, precipitación y evapotranspiración real.⁴

¹ Versión internet en http://hydrologie.org/glu/aglo.htm

² Ley 14.859 del 15 de diciembre de 1978 ("Código de Aguas"), Artículo 7º.- "El Ministerio competente llevará un inventario actualizado de los recursos hídricos del país, en el cual se registrará su ubicación, volumen, aforo, niveles, calidad, grado de aprovechamiento y demás datos técnicos pertinentes." (TITULO II: "Del inventario y apreciación de los recursos hídricos y del registro de los derechos al uso de aguas").

³ Proyecto URU/008/SCE/001-UNESCO, capítulo HIDROLOGÍA, Wilson, A.- CONADHI (1972-1973); Proyecto HIDROLOGÍA PARA EL DESARROLLO URU-87/007, MTOP-DNH-PNUD-OMM (1987-1990).

⁴ "Balance hídrico en el Uruguay" IMFIA-MTOP-UNESCO-PHI (dic. 2001).

El presente trabajo se orienta a actualizar la información hidrológica disponible organizándola desde un punto de vista regional y analizando las variables hidrometeorológicas en conjunto con las capacidades de retención de agua en los suelos.

El objetivo es disponer de criterios simplificados para extrapolar la información disponible a subcuencas no aforadas con fines de gestión y planificación, como paso previo al desarrollo de modelos más detallados.

La información hidrométrica utilizada en este estudio ha sido elaborada a partir de datos del Banco Nacional de Datos Hidrométricos que, junto con el Inventario de Aprovechamientos de Recursos Hídricos, integra el Sistema de Gestión de Recursos Hídricos (SGRH) que viene utilizando la División Recursos Hídricos desde el año 2005.

Se ha utilizado además información proporcionada por la Dirección Nacional de Meteorología (MDN) y datos extraídos de publicaciones de la División Suelos y Aguas Dirección General de Recursos Naturales Renovables (DGRNR) del Ministerio de Ganadería, Agricultura y Pesca para valorar la capacidad de almacenamiento de agua en los suelos.

El comportamiento medio de los ciclos de precipitaciones, evapotranspiración potencial y escurrimientos se presenta con mayor detalle en otra publicación de este Departamento.⁵

-

⁵ "Ciclos anuales y estacionales de parámetros hidrológicos (1980-2004)" - Depto. de Hidrología, DINAGUA-MVOTMA (mar. 2012).

2.- INFORMACIÓN UTILIZADA

2.1.- Información hidrométrica

La información hidrométrica utilizada en este estudio ha sido elaborada a partir de datos en el Banco Nacional de Datos Hidrométricos que, junto con el Inventario de Aprovechamientos de Recursos Hídricos, integra el Sistema de Gestión de Recursos Hídricos (SGRH) que ha desarrollado la División Recursos Hídricos.

En la Figura 2.1 se identifican por su código las estaciones hidrométricas utilizadas en el estudio y las respectivas cuencas de aporte. La Tabla 1 resume la información de identificación de dichas estaciones y los valores promediales de caudales específicos incrementales. Los números de estación son los que identifican los datos presentados en los distintos gráficos y tablas del documento.

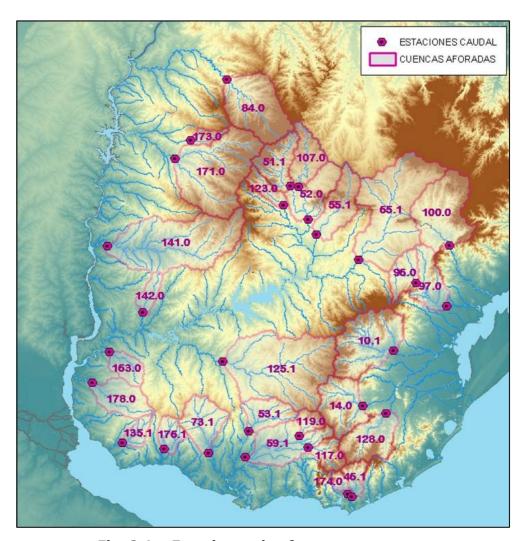


Fig. 2.1 - Estaciones de aforo y sus cuencas.

Fuente: SGRH (DINAGUA-MVOTMA)

Se seleccionó para este trabajo las estaciones hidrométricas que contaban con series de caudales continuas, extensas y confiables. El período de referencia estadística que se adoptó fue 1980 a 2004, en concordancia con los períodos de análisis considerados en otras publicaciones recientes del Departamento.⁶

Las cuencas aforadas cubren en total unos 82.850 km², un área equivalente al 45% del territorio nacional. Debe tenerse presente que de esa área unos 9.400 km² están en territorio brasileño (partes de las cuencas de los ríos Cuareim, Negro y Yaquarón).

En el Capítulo 3 se analiza la distribución espacial de los valores medios de los escurrimientos anuales y cuatrimestrales.

TABLA 1 – Estaciones de aforo (SGRH). (Período estadístico 1980-2004)

			AR	EA	CAUDA	L ESPEC	. INCR. (I	/s/km2)
CUENCA	RIO O ARROYO	No. est.	CUENCA TOTAL (km2)	CUENCA INCREM. (km2)	ANUAL	ABR- JUL	AGO- NOV	DIC- MAR
RÍO URUGUAY	Río Cuareim	84.0	4486	4486	21.0	30.6	18.3	14.2
RÍO URUGUAY	Río Queguay	141.0	7863	7863	15.4	23.3	13.7	9.1
RÍO URUGUAY	Río Arapey	171.0	6932	6932	16.0	24.9	11.6	11.6
RÍO URUGUAY	Río Arapey Ch.	173.0	519	519	19.8	29.5	17.2	12.7
RÍO URUGUAY	Río San Salvador	178.0	2157	2157	13.5	14.1	14.0	12.5
RÍO DE LA PLATA	Río San Juan	135.0	747	747	8.4	10.2	9.6	5.4
RÍO DE LA PLATA	Río Rosario	176.1	1001	1001	7.0	8.6	8.2	4.3
O. ATLANTICO	Ao. San Carlos	46.1	823	823	13.4	17.3	17.5	5.3
O. ATLANTICO	Ao. Maldonado	174.0	364	364	14.8	18.4	19.8	6.3
LAGUNA MERIN	Río Olimar	10.1	4676	4676	20.9	28.5	23.5	10.7
LAGUNA MERIN	Río Cebollatí	14.0	2899	2899	19.3	24.6	23.3	10.0
LAGUNA MERIN	Río Tacuarí	96.0	1425	1425	18.6	27.4	20.5	7.9
LAGUNA MERIN	Río Tacuarí	97.0	3540	2115	16.9	22.9	19.5	8.3
LAGUNA MERIN	Río Yaguarón	100.0	4701	4701	15.0	22.1	16.6	6.4
LAGUNA MERIN	Ao. Aiguá	128.0	2748	2748	14.0	20.5	14.8	6.7
RÍO NEGRO	Río Tacuarembó	51.1	2213	2213	20.8	27.9	20.5	14.0
RÍO NEGRO	Río Tacuarembó	52.0	6599	2460	23.7	34.4	23.6	12.9
RÍO NEGRO	Ao. Yaguarí	55.1	2489	2489	20.3	30.3	19.8	10.9
RÍO NEGRO	Río Negro	65.1	8045	8045	17.2	26.0	17.6	8.0
RÍO NEGRO	Ao. Cuñapirú	107.0	1926	1926	21.0	29.1	21.9	12.0
RÍO NEGRO	Ao. Tres Cruces	123.0	918	918	20.9	28.3	19.9	14.5
RÍO NEGRO	Río Yí	125.1	8884	8884	13.9	20.3	15.5	5.9
RÍO NEGRO	Ao. Don Esteban	142.0	783	783	10.7	14.7	10.3	7.0
RÍO NEGRO	Ao. Bequeló	163.0	1145	1145	10.6	13.5	10.7	7.7
RÍO STA. LUCIA	Río Santa Lucía Ch.	53.1	1748	1748	13.1	17.3	16.3	5.9
RÍO STA. LUCIA	Río Santa Lucía	59.1	4916	3149	12.6	14.9	14.6	8.3
RÍO STA. LUCIA	Río San José	73.1	2314	2314	13.3	15.7	15.7	8.4
RÍO STA. LUCIA	Río Santa Lucía	117.0	1077	1077	16.6	21.8	19.2	8.7
RÍO STA. LUCIA	Ao. Casupá	119.0	690	690	10.1	13.2	12.7	4.5

⁶ "Valores mensuales 2005 vs. Ciclos anuales 1980 - 2004" y "Series mensuales normalizadas 1996 - 2005"; Depto. de Hidrología, DNH-MTOP (dic. 2006).

2.2.- Información meteorológica

La Dirección Nacional de Meteorología del Uruguay (DNM - MDN) es la institución que gestiona la información meteorológica de carácter oficial en todo el territorio nacional. Para este estudio se utilizó información suministrada por la DNM (totales mensuales de precipitación y evapotranspiración potencial mensual según Thornthwaite) correspondiente al período de referencia 1980 – 2004. La información fue utilizada tal como fue suministrada, sin revisión de consistencia.

La Figura 2.2 muestra la ubicación de las estaciones meteorológicas utilizadas para el estudio. En la Tabla 2 se resumen los datos de identificación de las estaciones meteorológicas consideradas y la información utilizada en cada una de ellas (temperatura y/o precipitación).

La distribución espacial de los valores medios se presenta en el Capítulo 3.

TABLA 2 - Estaciones Meteorológicas (Dir. Nal. de Meteorología - MDN).

CÓDIGO	ESTACIÓN	LAT (S)	LONG (O)	DATOS UTILIZADOS
86315	BELLA UNION	30°20'	57° 58'	PREC,
86330	ARTIGAS	30°45'	56° 47'	PREC, TEMP
86350	RIVERA	30°91'	55° 55'	PREC, TEMP
86360	SALTO	31°45'	57° 98'	PREC, TEMP
86370	TACUAREMBO	31°70'	55°96'	PREC, TEMP
86430	PAYSANDU	32°33'	58°08'	PREC, TEMP
86440	MELO	32°37'	54°18'	PREC, TEMP
86450	YOUNG	32°71'	57° 62'	PREC, TEMP
86460	PASO DE LOS TOROS	32°82'	56° 50'	PREC, TEMP
86490	MERCEDES	33°25'	58°07'	PREC, TEMP
86500	TREINTA Y TRES	33°38'	54°63'	PREC, TEMP
86530	DURAZNO	33°37'	56° 53'	PREC, TEMP
86532	TRINIDAD	33°53'	56°88'	PREC,
86545	FLORIDA	34°07'	56° 25'	PREC, TEMP
86550	SAN JOSE	34°35'	56°72'	PREC,
86560	COLONIA	34°47'	57° 85'	PREC, TEMP
86565	ROCHA	34°48'	54°33'	PREC, TEMP
86580	CARRASCO	34°85'	56° 02'	PREC, TEMP
86585	PRADO	34°87'	56°20'	PREC,

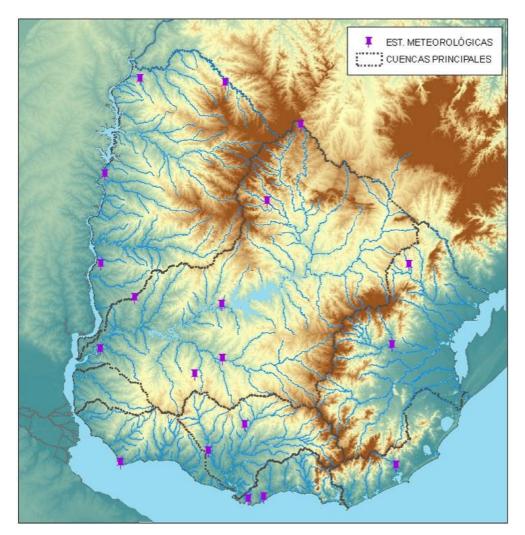


Fig. 2.2 – Estaciones meteorológicas (DNM-MDN)

Fuente: Elaboración sobre datos de DNM-MDN

2.3.- Información de capacidad de almacenamiento en suelos

En el año 2001 la División Suelos y Aguas Dirección General de Recursos Naturales Renovables (DGRNR) del Ministerio de Ganadería, Agricultura y Pesca publicó el informe "*Agua Disponible de las Tierras del Uruguay – Segunda Aproximación*" (J. H. Molfino; A. Califra).⁷

En dicho trabajo se estimó el potencial de almacenamiento de agua disponible neta (**APDN**) de las respectivas Unidades Cartográficas (noventa y nueve Asociaciones de Suelos), calculado como la diferencia entre la capacidad de campo (**CC**) y el punto de marchitez permanente (**CMP**).

- 6 -

^{7 &}quot;AGUA DISPONIBLE DE LAS TIERRAS DEL URUGUAY - SEGUNDA APROXIMACIÓN"; División Suelos y Aguas - Dirección General de Recursos Naturales Renovables (MGAP) - J.H. Molfino; A. Califra Mayo, 2001

Las unidades cartográficas fueron clasificadas por rangos de **APDN**. En la Figura 2.3 se muestra la clasificación de suelos resultante y se identifican como referencia las cuencas aforadas que se incluyeron en este estudio.

Puede observarse que en general existe dentro de cada cuenca aforada una cierta predominancia de una clase de suelos según esta clasificación, lo que alienta a establecer algún tipo de correlación entre este parámetro y los regímenes hidrológicos respectivos.

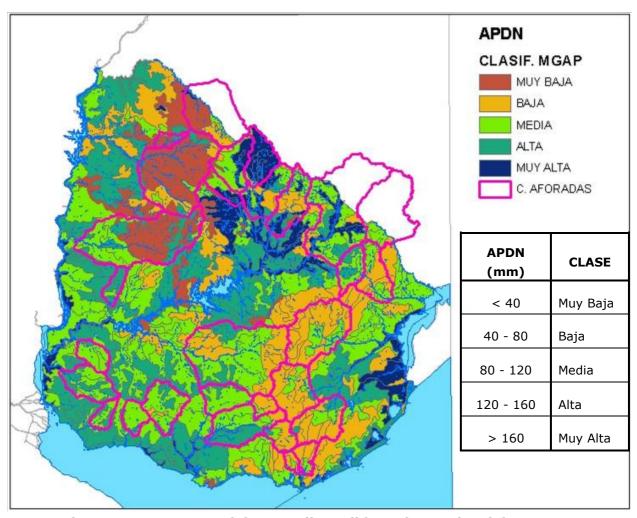


Fig. 2.3 – Agua potencialmente disponible en los suelos del Uruguay.

Fuente: Elaboración sobre datos de DGRNR-MGAP

La Tabla 3 muestra la distribución porcentual en el territorio nacional de las distintas clases definidas, los respectivos valores medios por clase y el total para el país.

TABLA 3 - Distribución areal de clases de suelos por APDN.

(Todo el país)

CLASE	% ÁREA TOTAL	APDN MEDIO (mm)
Muy Baja	9.6	26
Baja	21.1	64
Media	31.5	97
Alta	28.9	136
Muy Alta	8.9	168

TOTAL	100.0	101

En cada una de las subcuencas aforadas se calculó el promedio ponderado por áreas del parámetro APDN. Para cuencas transfronterizas el cálculo se hizo considerando solamente las porciones de cuenca en territorio uruguayo. (Ver Cap.

En la Tabla 4 se presentan datos análogos a los de la Tabla 3, pero limitados a las cuencas aforadas (aproximadamente el 40% del total del territorio nacional).

TABLA 4 - Distribución areal de clases de suelos por APDN. (Solamente en cuencas aforadas)

CLASE	% ÁREA TOTAL	APDN MEDIO (mm)
Muy Baja	15.3	27
Baja	26.1	64
Media	33.8	95
Alta	16.9	138
Muy Alta	7.9	167

TOTAL	100.0	89

En términos generales se puede concluir que:

- la distribución areal de las distintas clases de valores de APDN calculados para las unidades cartográficas de todo el país se corresponde aceptablemente con la correspondiente a las cuencas aforadas (Fig. 2.4), salvo la clase "alta" que está notoriamente sub-representada;
- considerados clase a clase, los promedios de APDN son aproximadamente equivalentes en el total del país y en las cuencas aforadas (Fig. 2.5).

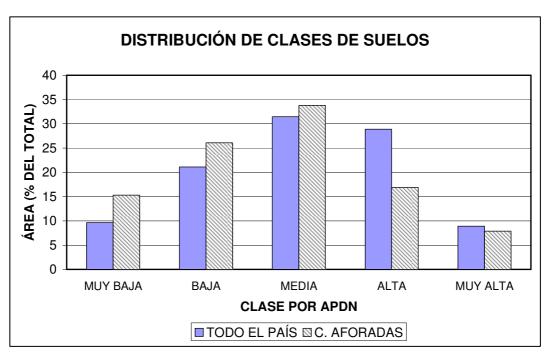


Fig. 2.4 – Distribución areal por clase de almacenamiento de agua en suelos.

Fuente: Elaboración sobre datos de DGRNR-MGAP

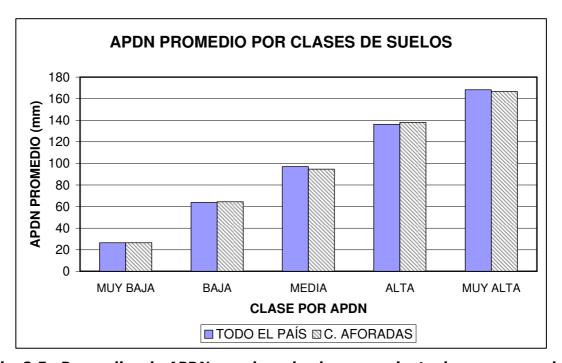


Fig. 2.5 – Promedios de APDN por clase de almacenamiento de agua en suelos (ponderados por área).

Fuente: Elaboración sobre datos de DGRNR-MGAP

3.- INTERPOLACIÓN DE VALORES ANUALES Y ESTACIONALES

La información disponible fue reelaborada con el uso de herramientas SIG (Sistemas de Información Geográfica) para apreciar gráficamente los patrones del comportamiento regional de los valores estadísticos determinados, en particular en los meses de verano (diciembre – marzo). En este período del año es que la práctica del riego se hace de manera más intensiva, sobre todo para los cultivos tradicionalmente más importantes, y por ello tiene interés para las actividades de gestión y evaluación de los aprovechamientos que realiza la DINAGUA.

El método clásico de interpolación para datos meteorológicos es el de polígonos de Thiessen. Este método asigna a cada punto con registros de datos un área delimitada por líneas rectas equidistantes de los demás puntos de referencia más cercanos y asume que dentro de esos polígonos los valores del parámetro considerado se distribuyen uniformemente. Por su relativa sencillez es un método aplicable sin necesidad de disponer de herramientas computacionales sofisticadas.

El método de interpolación de Krigging, implementado en los paquetes de análisis de las herramientas SIG, es aplicable en general para magnitudes de variables distribuidas en un medio homogéneo y mayormente isotrópico. Se basa en cálculos de autocorrelación entre los valores de todos los puntos de la muestra, y considera además la proximidad entre ellos. Por ello, parámetros como las precipitaciones y las temperaturas en una región de escaso relieve como la nuestra se ajustan bien con dicho método por superficies de interpolación relativamente uniformes.

En el caso de los caudales existen otros factores asociados con el medio físico por el que se desplaza el agua que pueden no estar bien representados en la muestra disponible, como por ejemplo la topografía y los límites de cuenca, las diferentes configuraciones hidrogeológicas, la distribución de los tipos de suelos, presencia de barreras hidráulicas, etc.. Además, la extrapolación fuera de los límites de las cuencas estudiadas es más difícil de justificar en ausencia de datos suficientes, como en cambio es natural hacer en el caso de los parámetros meteorológicos.

Por esta razón la interpolación de datos de caudales no parece una opción estrictamente válida con fines de regionalización, salvo de una manera cualitativa.

A continuación se presentan los resultados de procesar por estos métodos la información hidrometeorológica disponible (promedios de acumulados anuales y cuatrimestrales). El período de referencia estadística en todos los casos es 1980 – 2004.

3.1.- Interpolación de la precipitación media anual y cuatrimestral

Los mapas en la Figura 3.1 muestran la distribución de los datos de precipitación acumulada media anual y por cuatrimestres utilizando el método de interpolación de Krigging.

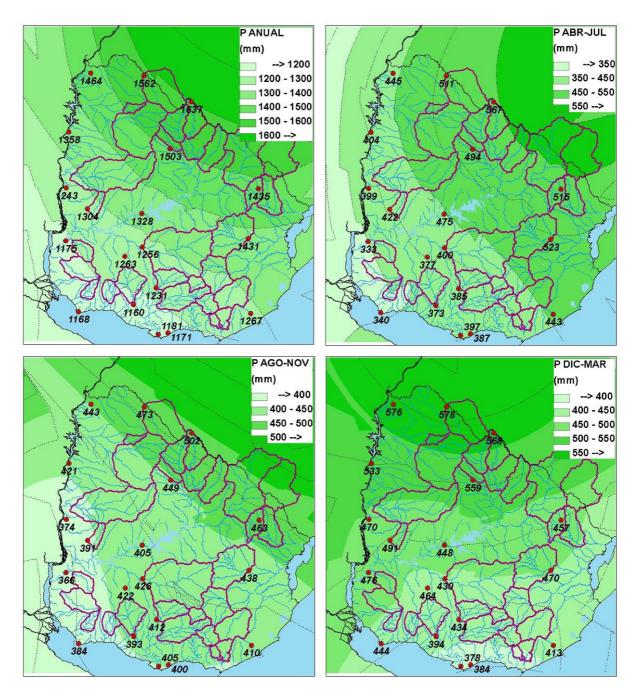


Fig. 3.1 – Precipitación acumulada anual y por cuatrimestres (1980-2004)

Fuente: Elaboración sobre datos de DNM-MDN

3.2.- Interpolación de la ETP media anual y de verano

Los mapas en la Figura 3.2 muestran los resultados de un análisis similar al del parágrafo anterior con los datos de evapotranspiración potencial acumulados anuales y por cuatrimestres (Krigging).

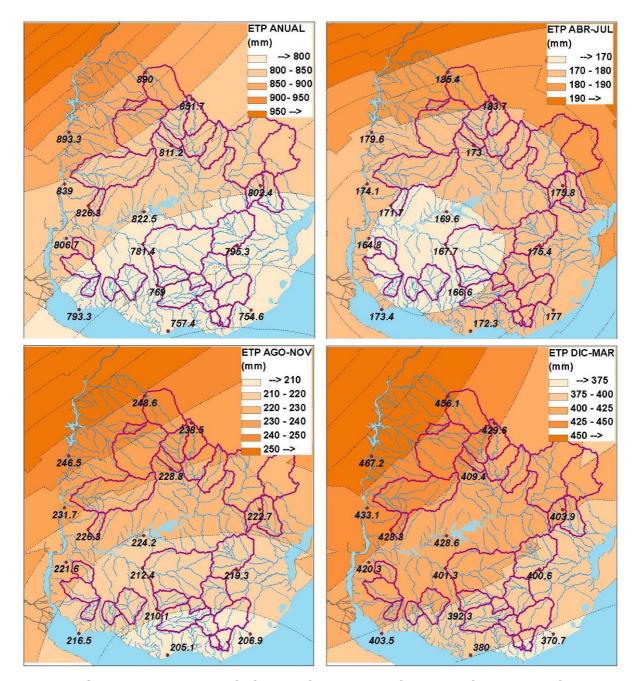


Fig. 3.2 - ETP acumulada anual y por cuatrimestres (1980-2004)

Fuente: Elaboración sobre datos de DNM-MDN

3.3.- Aproximación a la regionalización de los escurrimientos

En base a las conclusiones presentadas en el documento ya citado "Ciclos anuales y estacionales de parámetros hidrológicos (1980 – 2004)" respecto a la semejanza en los ciclos anuales de los valores medios de **E** y de **P** - **ETP**, se procedió a generar una superficie de interpolación resultante de restar los valores medios de precipitación y evapotranspiración potencial en cada período estudiado.

Las superficies resultantes se muestran en la Figura 3.3 para los valores anuales y cuatrimestrales y se pueden considerar como indicativas de los patrones de escurrimiento en cada período, a menos de la incidencia de los suelos.

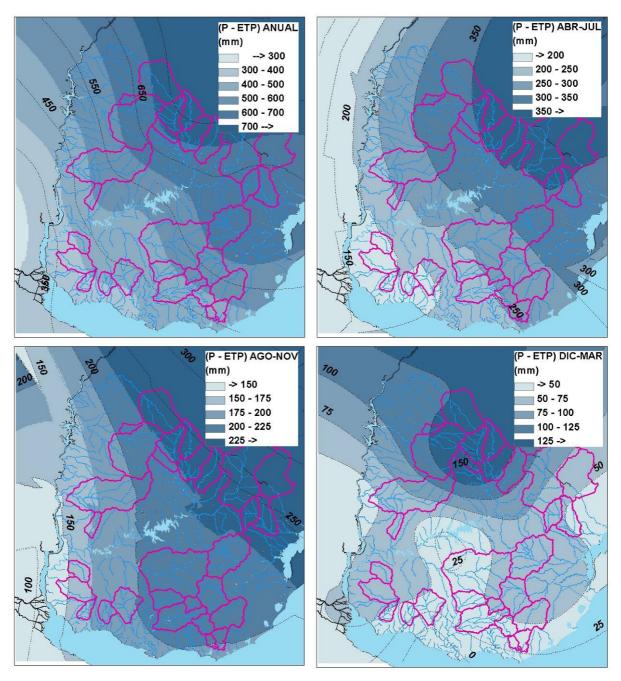


Fig. 3.3 - Diferencias P - ETP anuales y por cuatrimestres (1980-2004)

Fuente: Elaboración sobre datos de DNM-MDN

4.- REGIONALIZACIÓN DE ESCURRIMIENTOS

4.1.- Regionalización de cuencas aforadas en base a APDN

El criterio propuesto para establecer una regionalización hidrológica se basa en comparar los valores de capacidad de almacenamiento de los suelos (agua potencialmente disponible neta, *APDN*) en cuencas geográficamente próximas y con comportamientos hidrológicos similares, considerando los patrones generales de escurrimiento (ver parágrafo 3.3). Para ello se calculó en cada una de las cuencas aforadas el valor medio ponderado de *APDN*. En la Tabla 5 se resumen los resultados, a su vez agrupados y promediados según la propuesta de regionalización que se está presentando. Las áreas utilizadas en cada caso corresponden a las porciones de cuenca en territorio uruguayo.

TABLA 5 - APDN por cuenca aforada.

REGIÓN	RIO O ARROYO	No. est.	APDN (mm)
LITORAL NORTE	Río Queguay	141.0	72
CENTRO NORTE	Río Cuareim	84.0	43
	Río Arapey	171.0	39
	Río Arapey Ch.	173.0	51
NORESTE	Río Tacuarembó	51.1	110
	Río Tacuarembó	52.0	118
	Ao. Cuñapirú	107.0	162
	Ao. Tres Cruces	123.0	108
LITORAL SUR	Ao. Don Esteban	142.0	130
	Ao. Bequeló	163.0	119
	Río San Salvador	178.0	126
SUROESTE	Río San Juan	135.0	123
	Río Rosario	176.1	101
CENTRO SUR	Río Santa Lucía Ch.	53.1	105
	Río Santa Lucía	59.1	110
	Río San José	73.1	107
	Río Yí	125.1	90
CENTRO ESTE	Ao. Yaguarí	55.1	104
	Río Negro	65.1	120
	Río Tacuarí	96.0	111
	Río Tacuarí	97.0	86
	Río Yaguarón	100.0	101
ESTE	Río Olimar	10.1	73
	Río Cebollatí	14.0	72
	Ao. Aiguá	128.0	78
SURESTE	Ao. San Carlos	46.1	66
	Río Santa Lucía	117.0	75
	Ao. Casupá	119.0	72
	Ao. Maldonado	174.0	62

Fuente: Elaboración sobre datos de DGRNR-MGAP

De acuerdo a la clasificación por **APDN** (ver Capítulo 2), solamente una de las cuencas aforadas considerada globalmente pertenecería al grupo de "muy baja" capacidad de almacenamiento, tres al grupo de "alta" capacidad y el resto se distribuye equilibradamente en las clases de "baja" y "media" capacidad (10 y 14 casos, respectivamente). Resulta entonces que las cuencas aforadas tienen una irregular representatividad desde el punto de vista de esta clasificación, con una marcada sub-representación de las clases extremas.

En la Figura 4.1 se indican los valores promedio de **APDN** calculados en cada cuenca en particular y los promedios ponderados calculados para cada región propuesta.

Se debe observar que la cuenca del río Queguay tiene un valor promedio de **APDN** de 72 mm resultante de componer dos zonas nítidamente diferenciadas: la cuenca alta con valores bajos, más próximos a los de las cuencas aforadas de los ríos Cuareim y Arapey, y la cuenca baja con valores de **APDN** más altos, cercanos a los del litoral al sur del río Negro (ver Fig. 2.3). Por esa razón esta cuenca no se ha agrupado con ninguna de las dos regiones colindantes, y se verá que su comportamiento global tampoco puede ser asociado categóricamente al de alguna de ellas, sino que más bien comparte características de ambas.

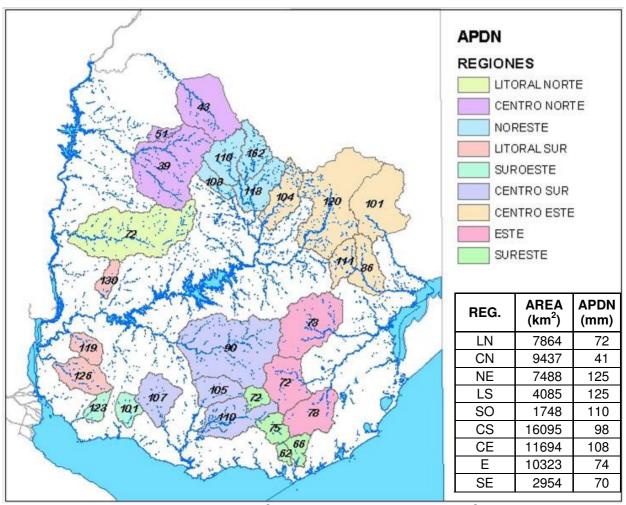


Fig. 4.1 - Regionalización de cuencas aforadas según APDN.

Fuente: Elaboración sobre datos de DGRNR-MGAP

Debido a esta heterogeneidad interna respecto al parámetro **APDN** en algunas de las cuencas aforadas (por ejemplo los ríos Queguay, Yí y Santa Lucía), amerita considerarse el establecimiento de estaciones de observación intermedias, o su jerarquización si ya existiesen, además de la permanente necesidad de ampliación de la red a zonas que actualmente no son aforadas.

4.2.- Verificación en base a curvas de frecuencia estacionales

En términos generales, para los fines de gestión de los recursos hídricos el período del año más sensible es el correspondiente a los meses en los que las demandas se intensifican. Teniendo en cuenta este punto de vista, en este parágrafo se hará foco en los datos correspondientes al cuatrimestre de diciembre a marzo. En ese período es que se concentran las demandas de agua para suplementar mediante riego las necesidades no cubiertas por las precipitaciones.

Se calcularon las curvas de frecuencia de caudales específicos medios diarios en dicho cuatrimestre (período de referencia 1980-2004) en cada una de las estaciones seleccionadas.

Los datos han sido agrupados según los criterios de regionalización propuestos. Las Figuras 4.2 a 4.5 muestran las curvas de frecuencia para cada grupo de estaciones. Se incluyen además en cada gráfico como referencia los valores correspondientes al promedio general y a la frecuencia 50% del cuatrimestre (promedios ponderados de los respectivos grupos). Los números que identifican a las curvas corresponden a los códigos de las estaciones hidrométricas.

Para las escalas de tiempo utilizadas en este análisis se ha encontrado que los comportamientos de estaciones pertenecientes a un mismo grupo son similares. Ello habilita a proponer por cada grupo una "curva de frecuencias sintética" que pueda razonablemente ser considerada característica de la región y por lo tanto extrapolada a cuencas similares y cercanas sin datos.

El método utilizado para crear esas curvas sintéticas fue calcular dentro de cada grupo los promedios ponderados por área de cuenca de los valores correspondientes a cada intervalo de frecuencias.

La Figura 4.6 muestra estas curvas de frecuencias (sintéticas por región) de los caudales específicos diarios en los meses de diciembre a marzo. Un detalle de la rama de caudales más bajos (frecuencia mayor a 50%) se presenta en la Figura 4.7, con el destaque de los valores 0,4 y 0,6 L/s/km² utilizados convencionalmente como referencia para la asignación de caudales en las solicitudes de aprovechamiento de aguas a falta de evaluaciones más precisas.

Este último gráfico permite valorar el margen disponible para adoptar criterios de referencia regionales para los caudales específicos en estiajes. En efecto, en cualquiera de las regiones estudiadas resulta que:

- el valor de 0,6 L/s/km² no es alcanzado como mínimo en el 15% de los días del cuatrimestre, pero sería un valor "seguro" para el 60% de los días;
- el valor de 0,4 L/s/km² no es alcanzado como mínimo en el 5% de los días y sería "seguro" solamente para el 65% de los días del cuatrimestre.

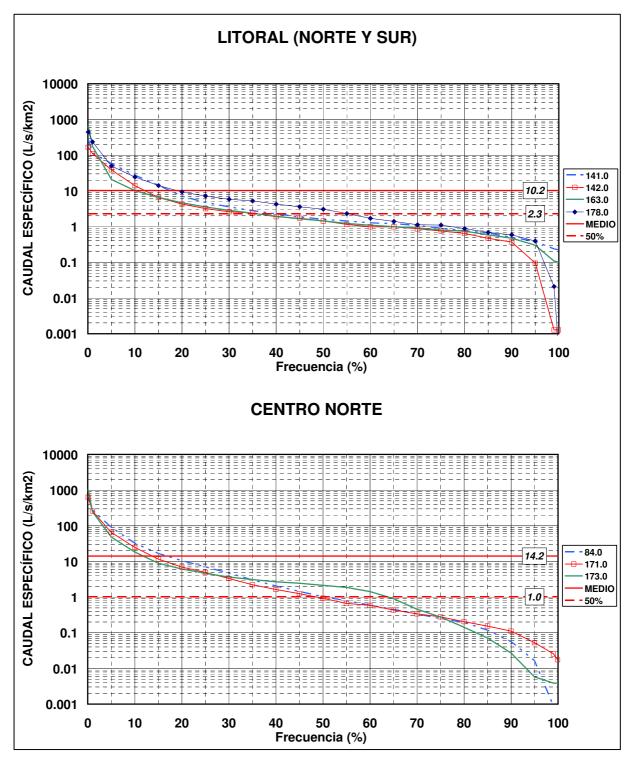


Fig. 4.2 – Frecuencias de caudales específicos diarios DIC-MAR.

Período de referencia 1980-2004

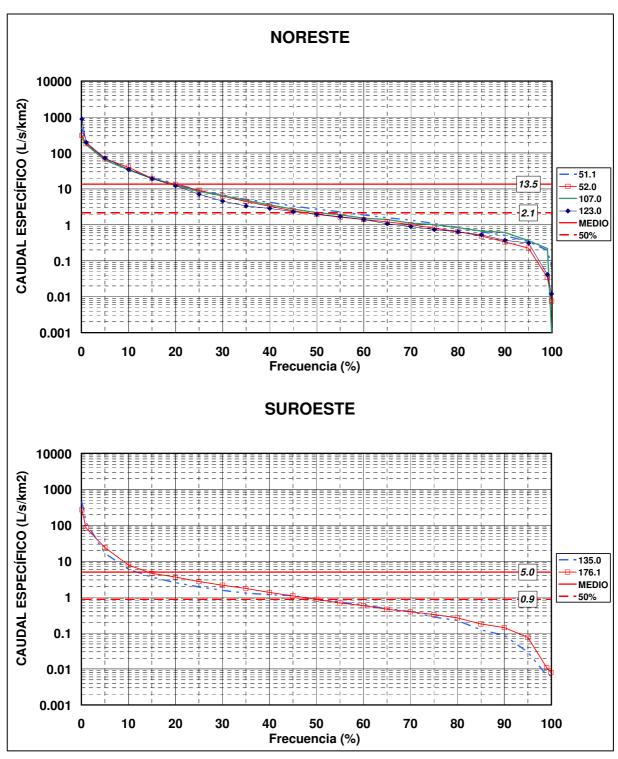


Fig. 4.3 – Frecuencias de caudales específicos diarios DIC-MAR (cont.)

Período de referencia 1980-2004

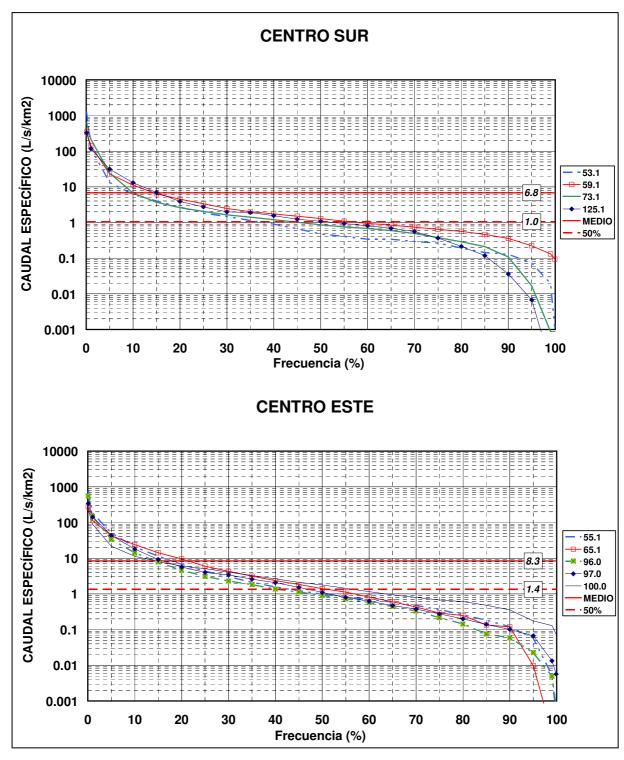


Fig. 4.4 – Frecuencias de caudales específicos diarios DIC-MAR (cont.)

Período de referencia 1980-2004

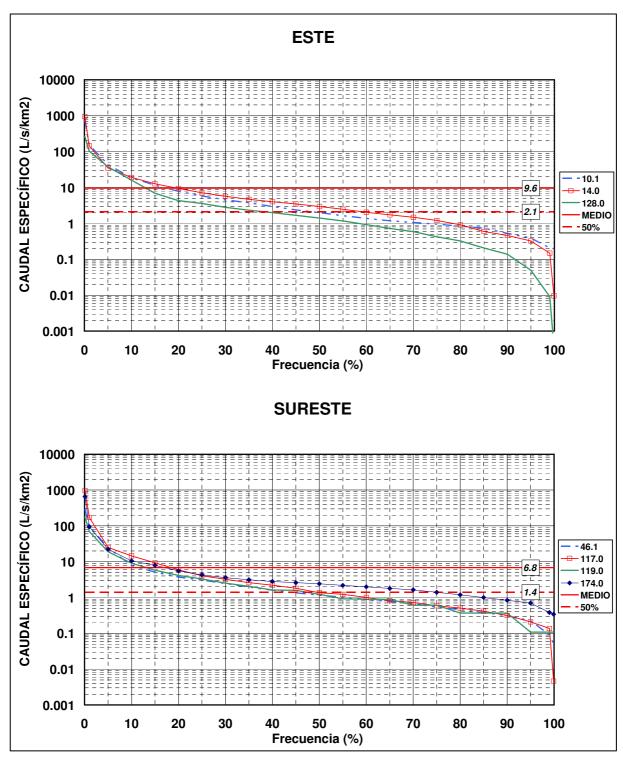


Fig. 4.5 – Frecuencias de caudales específicos diarios DIC-MAR (cont.)

Período de referencia 1980-2004

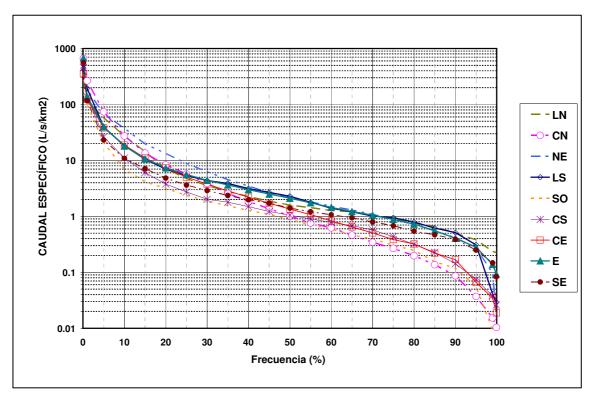


Fig. 4.6 – Curvas de frecuencias diarias DIC-MAR (sintéticas por región)

Período de referencia 1980-2004

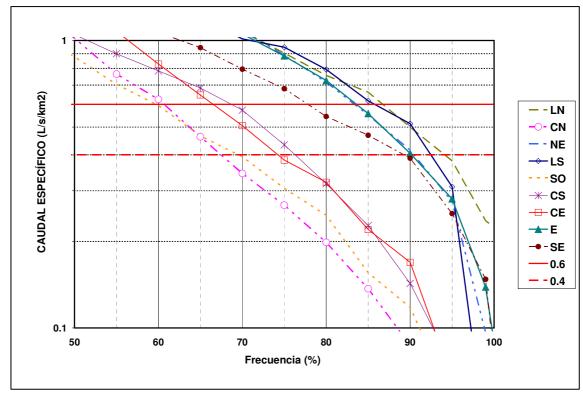


Fig. 4.7 – Curvas de frecuencias diarias DIC-MAR (sintéticas por región) $(detalle\ f > 50\%)$

Período de referencia 1980-2004

4.3.- Verificación en base a los ciclos anuales de escurrimientos

En la Tabla 6 se presentan los datos de escurrimientos medios mensuales en el período 1980–2004 de las estaciones incluidas en el estudio, expresados en **mm/mes**. Se dan también los promedios mensuales ponderados por grupo.

En las Figuras 4.8 a 4.10 se muestran gráficamente los ciclos medios de caudales específicos (**L/s/km²**) de las cuencas estudiadas agrupadas según la propuesta. Cada gráfico contiene los promedios mensuales de todas las estaciones de observación asociadas a una región. Se indica con barras verticales el ciclo promedio conjunto, calculado mes a mes como promedios ponderados por áreas.

En cada uno de los grupos propuestos se observa que los comportamientos mes a mes en los escurrimientos medios son semejantes: los meses de máximos y de mínimos coinciden, las secuencias de meses "húmedos" y "secos" son idénticas y los valores numéricos para cada mes resultan razonablemente comparables.

TABLA 6 – Escurrimientos mensuales en cuencas aforadas. (Período de referencia 1980-2004)

							E (mm	/mes)					
REGION	N° EST.	ABR	MAY	JUN	JUL	AGO	SET	ост	NOV	DIC	ENE	FEB	MAR
LITORAL NORTE	141.0	67.8	85.7	48.6	43.9	30.9	38.7	38.1	36.4	34.4	16.2	17.5	27.8
		67.8	85.7	48.6	43.9	30.9	38.7	38.1	36.4	34.4	16.2	17.5	27.8
CENTRO NORTE	84.0	104.8	90.9	71.8	54.5	35.9	50.3	52.9	53.7	34.3	22.3	45.8	44.7
	171.0	115.6	67.2	38.1	37.6	20.6	24.7	27.0	37.0	25.8	30.0	17.0	49.6
	173.0		72.9	73.0	39.0	19.9	59.2	56.1	46.0	41.7	29.6	28.3	33.3
		111.9	76.4	52.3	44.0	26.3	35.8	38.0	43.7	29.7	27.1	28.3	47.0
NORESTE	51.1	81.2	84.3	68.5	60.1	43.6	57.4	67.3	47.9	42.9	30.7	29.6	43.2
	52.0	73.1	96.8	82.7	71.1	53.4	64.1	68.3	46.8	38.9	29.6	26.5	41.5
	107.0	72.4	89.7	75.9	69.1	55.3	58.4	69.8	47.2	39.4	25.7	27.4	33.4
	123.0	84.2	91.9	66.5	55.5	41.1	55.9	60.1	52.9	38.4	34.3	28.3	51.8
		76.7	90.7	74.8	65.4	49.5	59.7	67.4	48.0	40.1	29.5	27.9	41.2
LITORAL SUR	142.0	42.1	44.5	35.8	32.6	25.4	27.0	27.7	28.4	20.0	12.9	22.2	17.6
	163.0	34.9	38.4	32.5	36.8	29.4	26.8	31.7	24.7	24.1	8.6	21.4	25.9
	178.0	43.6	39.2	36.3	29.6	26.2	42.3	38.0	40.2	35.9	25.2	32.2	37.5
		40.9	40.0	35.1	32.2	27.0	35.0	34.3	33.6	29.5	18.2	27.3	30.4
SUROESTE	135.1	18.0	32.9	30.4	26.1	24.0	24.8	27.7	25.2	11.7	6.7	17.4	19.7
	176.1	19.7	21.2	25.8	24.2	22.1	24.1	21.1	19.2	10.7	5.5	13.4	14.6
		18.9	26.2	27.8	25.0	22.9	24.4	23.9	21.7	11.2	6.0	15.1	16.8
CENTRO SUR	53.1	26.8	50.5	55.9	49.1	49.9	46.9	40.9	34.0	18.9	4.5	19.7	17.7
	59.1	29.1	37.1	53.7	50.9	43.5	42.6	43.6	32.0	13.9	9.5	21.1	23.8
	73.1	30.6	50.3	42.7	42.4	43.5	44.0	39.4	38.7	19.3	10.5	32.1	24.6
	125.1	33.7	57.6	59.5	64.1	46.7	48.7	35.9	32.1	16.3	12.0	15.8	17.5
		31.6	51.8	55.5	56.8	46.0	46.7	38.4	33.3	16.5	10.5	19.6	19.8
CENTRO ESTE	55.1	87.1	83.9	80.2	68.1	47.2	63.3	56.9	41.3	33.1	27.1	20.8	33.7
	65.1	58.7	75.0	79.6	65.2	49.4	56.4	49.0	34.0	26.1	20.1	14.2	25.3
	96.0 97.0	58.9 43.1	65.3 56.7	80.3 72.6	84.1 88.1	57.3 58.4	72.6 69.2	47.2 47.8	38.5 34.1	22.8 20.7	15.9 18.0	21.4 19.8	22.6
	100.0	43.1	47.9	72.6 59.2	67.1	49.7	45.8	41.6	30.8	20.7 15.7	12.8	16.9	27.1 18.7
	100.0	58.4	66.6	73.8	70.1	50.8	57.4	47.9	34.5	23.5	18.6	16.9	24.8
ESTE	10.1	60.5	75.2	84.3	80.7	73.7	79.0	49.1	45.7	31.4	21.0	31.8	27.1
ESIE	14.0	41.1	53.0	80.3	85.5	68.3	67.3	51.3	58.6	27.3	13.4	22.9	41.4
	128.0	40.3	42.2	72.3	60.5	57.3	40.4	35.3	23.7	14.1	9.9	14.1	32.1
	120.0	49.7	60.2	80.0	76.7	67.8	65.5	46.1	43.5	25.7	15.9	24.6	32.1
SURESTE	46.1	30.7	38.4	51.3	55.9	55.2	49.7	48.3	31.6	14.5	8.1	17.0	13.0
CONLOIL	117.0	33.5	52.8	75.6	67.9	64.3	56.4	48.0	33.6	25.3	11.3	22.2	32.3
	117.0	19.8	33.5	40.8	45.8	39.3	37.4	32.6	24.2	11.1	6.8	14.5	14.6
	174.0	31.7	43.0	61.1	58.2	65.5	52.7	53.4	37.7	11.6	17.0	13.0	23.9
	177.0	29.3	43.1	58.9	58.2	56.1	49.6	45.2	31.4	17.3	10.0	17.8	21.7

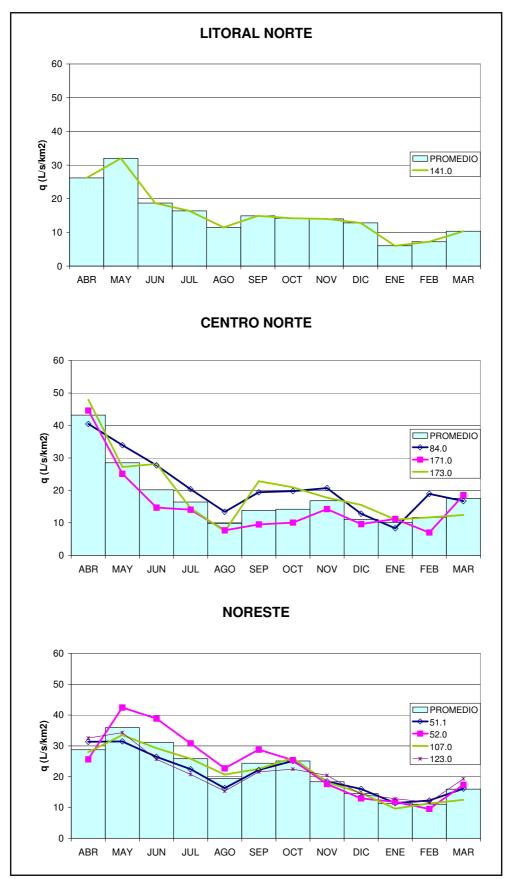


Fig. 4.8 – Ciclos anuales de caudales específicos regionalizados.

Período de referencia 1980-2004

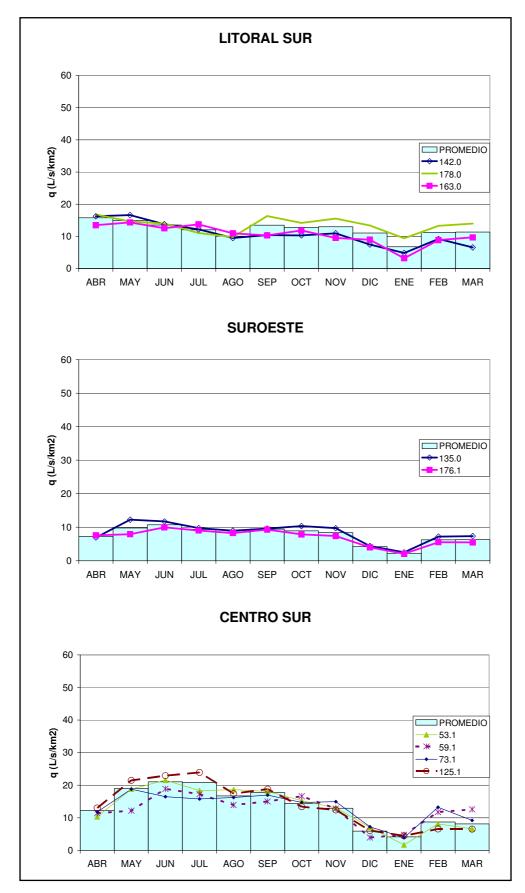


Fig. 4.9 – Ciclos anuales de caudales específicos regionalizados (cont.).

Período de referencia 1980-2004

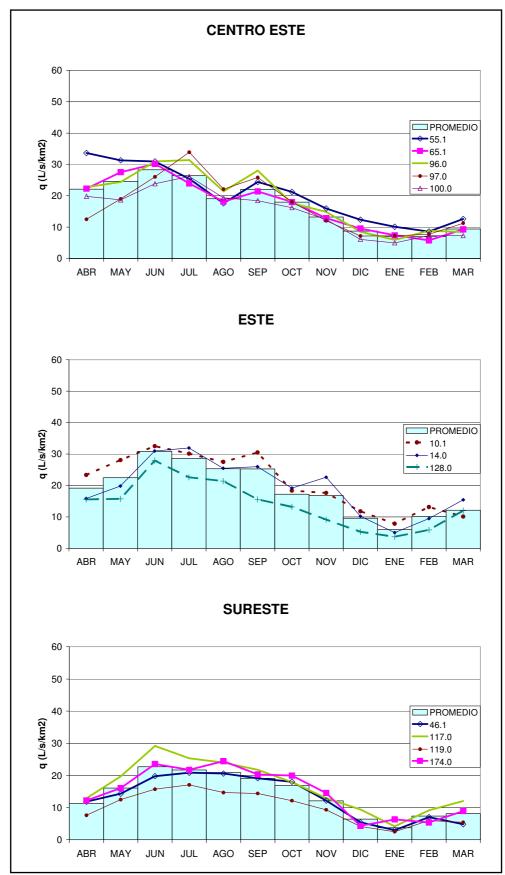


Fig. 4.10 – Ciclos anuales de caudales específicos regionalizados (cont.).

Período de referencia 1980-2004

5.- RESUMEN DE PARÁMETROS ESTACIONALES REGIONALIZADOS

A partir de las conclusiones de los capítulos anteriores sobre la validez de la propuesta de regionalización de los valores estacionalizados se ensayó establecer una relación entre los parámetros calculados (P, ETP, E y C) en cada una de las regiones.

En la Tabla 7 se resumen los valores calculados de los parámetros hidrológicos en base a los criterios de regionalización propuestos en este estudio. Se presentan los valores promedios acumulados correspondientes a los cuatrimestres de cada una de las regiones identificadas para las cuencas aforadas.

Se trata de promedios calculados solamente en cuatrimestres con al menos dos meses completos de información de caudales. Por esta razón se encontrarán discrepancias menores entre los valores de esta tabla y los que surgirían de los valores de la Tabla 6, que han sido calculados utilizando todos los datos mensuales disponibles.

Las Tablas 8, 9 y 10 presentan el mismo tipo de información que la Tabla 7 pero referida a los valores correspondientes a frecuencias observadas para cada parámetro (acumulados por cuatrimestre) de 50%, 70% y 90% respectivamente.

Para determinar los coeficientes de escurrimiento se han utilizado valores acumulados por cuatrimestres simultáneos. Esto quiere decir que los valores del parámetro \boldsymbol{C} presentados en la tabla deben entenderse como un promedio de coeficientes y no un coeficiente de promedios. Una consideración similar se debe hacer sobre los valores calculados de \boldsymbol{P} – \boldsymbol{ETP} , que corresponden a diferencias medias de valores simultáneos y no a diferencias de promedios.

Es por todo esto que no se deberá asumir que las relaciones sean válidas para algún mes en particular sino como promedios en el cuatrimestre totalizado correspondiente.

TABLA 7 – Resumen de valores estacionales regionalizados para las cuencas aforadas. - Promedios

		P (mm	/mes)			ETP (mi	m/mes)	
REGION	ANUAL	ABR- JUL	AGO- NOV	DIC- MAR	ANUAL	ABR- JUL	AGO- NOV	DIC- MAR
LITORAL NORTE	114	113	103	126	70	43	58	107
CENTRO NORTE	121	128	102	134	71	45	60	109
NORESTE	131	133	119	140	69	44	58	105
LITORAL SUR	103	87	94	127	67	41	55	105
SUROESTE	97	88	93	109	66	43	55	100
CENTRO SUR	106	108	104	107	65	42	53	99
CENTRO ESTE	121	131	116	117	67	44	56	102
ESTE	118	126	109	120	65	43	54	99
SURESTE	106	112	103	102	63	43	52	94
PROMEDIO:	116	120	108	121	67	43	56	103
		F /	/ \			D ETD (m)		
		E (mm ABR-	/mes) AGO-	DIC-		P-ETP (mm/mes)		
REGION	ANUAL	JUL	NOV	MAR	ANUAL	JUL	NOV	DIC- Mar
LITORAL NORTE	40	61	36	24	44	70	45	19
CENTRO NORTE	46	73	35	30	50	83	42	24
NORESTE	56	76	56	35	61	88	61	35
LITORAL SUR	32	37	32	26	36	46	39	22
SUROESTE	20	24	23	13	31	45	39	9
CENTRO SUR	36	49	41	17	41	65	51	8
CENTRO ESTE	45	67	48	21	54	87	60	15
ESTE	49	63	57	26	53	83	55	20
SURESTE	37	48	45	17	42	69	51	8
PROMEDIO:	43	61	44	24	49	76	52	18
		C				/D ETD	(mm/me	2)
		ABR-	AGO-	DIC-		ABR-	AGO-	DIC-
REGION	ANUAL	JUL	NOV	MAR	ANUAL	JUL	NOV	MAR
LITORAL NORTE	0.35	0.49	0.32	0.16	-4	-9	-9	6
CENTRO NORTE	0.38	0.52	0.33	0.20	-4	-9	-7	6
NORESTE	0.43	0.54	0.45	0.20	-6	-12	-5	-1
LITORAL SUR	0.31	0.40	0.33	0.19	-4	-9	-6	4
SUROESTE	0.21	0.26	0.23	0.10	-11	-21	-16	3
CENTRO SUR	0.34	0.41	0.37	0.13	-6	-16	-10	9
CENTRO ESTE	0.37	0.47	0.40	0.15	-9	-20	-12	6
ESTE	0.41	0.46	0.51	0.18	-4	-20	2	6
SURESTE	0.35	0.40	0.41	0.15	-6	-21	-6	9
PROMEDIO:	0.37	0.46	0.39	0.16	-6	-15	-8	6

TABLA 8 – Resumen de valores estacionales regionalizados para las cuencas aforadas. - Frecuencia cuatrimestral 50%

	P	(mm/mes	s)	ET	ETP (mm/mes)			
REGION	ABR-	AGO-	DIC-	ABR-	AGO-	DIC-		
REGION	JUL	NOV	MAR	JUL	NOV	MAR		
LITORAL NORTE	119	93	125	44	58	108		
CENTRO NORTE	131	104	140	46	59	110		
NORESTE	137	110	139	45	58	105		
LITORAL SUR	87	92	129	42	55	105		
SUROESTE	82	87	103	42	54	100		
CENTRO SUR	104	96	101	44	53	99		
CENTRO ESTE	128	109	119	45	56	102		
ESTE	122	105	119	44	54	99		
SURESTE	108	91	96	45	51	95		
PROMEDIO:	119	102	120	44	56	103		

	Е	E (mm/mes) P-ETP (mm/mes)				nes)
REGION	ABR-	AGO-	DIC-	ABR-	AGO-	DIC-
REGION	JUL	NOV	MAR	JUL	NOV	MAR
LITORAL NORTE	59	31	12	70	37	18
CENTRO NORTE	80	34	28	82	44	31
NORESTE	74	48	22	89	52	32
LITORAL SUR	38	25	22	42	34	20
SUROESTE	25	16	9	45	32	4
CENTRO SUR	48	36	7	60	41	1
CENTRO ESTE	62	41	12	84	55	17
ESTE	59	53	16	77	53	24
SURESTE	44	36	10	63	41	2
PROMEDIO:	60	39	15	73	46	18

		С		E - (P -	E - (P - ETP) (mm/mes)			
REGION	ABR-	AGO-	DIC-	ABR-	AGO-	DIC-		
nedion	JUL	NOV	MAR	JUL	NOV	MAR		
LITORAL NORTE	0.55	0.31	0.14	-11	-6	-6		
CENTRO NORTE	0.62	0.31	0.19	-2	-10	-3		
NORESTE	0.56	0.44	0.16	-15	-4	-10		
LITORAL SUR	0.39	0.30	0.16	-4	-9	2		
SUROESTE	0.25	0.20	0.08	-20	-16	5		
CENTRO SUR	0.42	0.38	0.07	-12	-6	7		
CENTRO ESTE	0.49	0.39	0.11	-23	-14	-5		
ESTE	0.47	0.53	0.15	-18	0	-8		
SURESTE	0.40	0.43	0.11	-19	-5	9		
PROMEDIO:	0.49	0.38	0.13	-14	-8	-2		

TABLA 9 – Resumen de valores estacionales regionalizados para las cuencas aforadas – Frecuencia cuatrimestral 70%.

	Р	(mm/me	s)	ETP (mm/mes)			
REGION	ABR-	AGO-	DIC-	ABR-	AGO-	DIC-	
11231011	JUL	NOV	MAR	JUL	NOV	MAR	
LITORAL NORTE	91	87	106	42	56	106	
CENTRO NORTE	94	89	111	43	58	106	
NORESTE	113	100	121	42	57	102	
LITORAL SUR	71	77	105	40	53	102	
SUROESTE	67	76	89	40	53	97	
CENTRO SUR	87	84	75	40	51	96	
CENTRO ESTE	110	92	96	42	54	100	
ESTE	93	92	79	41	51	96	
SURESTE	84	80	79	41	50	92	
PROMEDIO:	96	89	95	41	54	100	

	E	(mm/mes	s)	P-ETP (mm/mes)			
REGION	ABR- JUL	AGO- NOV	DIC- MAR	ABR- JUL	AGO- NOV	DIC- MAR	
LITORAL NORTE	20	20	8	45	27	-4	
CENTRO NORTE	39	26	10	54	30	0	
NORESTE	48	37	12	69	42	12	
LITORAL SUR	17	18	11	30	23	-1	
SUROESTE	14	12	4	25	25	-10	
CENTRO SUR	25	23	3	45	31	-23	
CENTRO ESTE	40	29	5	67	39	-6	
ESTE	35	38	7	53	38	-19	
SURESTE	31	27	4	44	29	-16	
PROMEDIO:	33	28	7	53	34	-9	

		С		E - (P - ETP) (mm/mes)			
REGION	ABR-	AGO-	DIC-	ABR-	AGO-	DIC-	
HEGION	JUL	NOV	MAR	JUL	NOV	MAR	
LITORAL NORTE	0.36	0.23	0.07	-24	-7	11	
CENTRO NORTE	0.41	0.27	0.10	-15	-4	10	
NORESTE	0.43	0.38	0.11	-21	-4	0	
LITORAL SUR	0.26	0.22	0.11	-13	-5	12	
SUROESTE	0.18	0.15	0.04	-10	-13	14	
CENTRO SUR	0.30	0.28	0.04	-20	-8	26	
CENTRO ESTE	0.36	0.32	0.05	-26	-10	12	
ESTE	0.36	0.40	0.08	-18	0	26	
SURESTE	0.29	0.32	0.06	-13	-2	20	
PROMEDIO:	0.35	0.30	0.07	-20	-6	15	

TABLA 10 – Resumen de valores estacionales regionalizados para las cuencas aforadas – Frecuencia cuatrimestral 90%.

	P	(mm/mes	s)	ETP (mm/mes)			
REGION	ABR-	AGO-	DIC-	ABR-	AGO-	DIC-	
HEGION	JUL	NOV	MAR	JUL	NOV	MAR	
LITORAL NORTE	73	64	87	39	54	101	
CENTRO NORTE	81	77	76	40	55	103	
NORESTE	80	75	89	38	54	97	
LITORAL SUR	42	55	77	35	50	99	
SUROESTE	50	57	62	38	51	94	
CENTRO SUR	63	71	64	37	50	91	
CENTRO ESTE	69	72	61	37	51	95	
ESTE	78	76	56	37	49	93	
SURESTE	71	67	62	37	48	87	
PROMEDIO:	71	71	69	37	52	96	

	E	(mm/mes	s)	P-ETP (mm/mes)			
REGION	ABR-	AGO-	DIC-	ABR-	AGO-	DIC-	
HEGIGIT	JUL	NOV	MAR	JUL	NOV	MAR	
LITORAL NORTE	16	14	3	29	12	-27	
CENTRO NORTE	15	16	3	31	18	-32	
NORESTE	26	26	4	40	17	-15	
LITORAL SUR	7	7	5	6	2	-28	
SUROESTE	5	8	1	6	2	-41	
CENTRO SUR	10	13	1	22	19	-37	
CENTRO ESTE	20	21	1	35	19	-46	
ESTE	26	27	2	38	25	-43	
SURESTE	12	17	2	30	15	-33	
PROMEDIO:	17	18	2	30	17	-36	

		C E - (P - ETP) (mm/me					
REGION	ABR-	AGO-	DIC-	ABR-	AGO-	DIC-	
HEGION	JUL	NOV	MAR	JUL	NOV	MAR	
LITORAL NORTE	0.18	0.16	0.03	-12	2	30	
CENTRO NORTE	0.21	0.22	0.03	-17	-1	36	
NORESTE	0.26	0.30	0.04	-14	8	19	
LITORAL SUR	0.16	0.12	0.06	1	6	33	
SUROESTE	0.10	0.11	0.01	-1	6	41	
CENTRO SUR	0.17	0.18	0.01	-12	-6	38	
CENTRO ESTE	0.21	0.21	0.02	-15	2	47	
ESTE	0.27	0.34	0.04	-12	2	45	
SURESTE	0.18	0.22	0.03	-18	2	36	
PROMEDIO:	0.21	0.22	0.03	-13	1	38	