

Desarrollo de tecnologías para celdas solares fotovoltaicas basadas en nanomateriales

Responsable: Alvaro Mombrú

Cryssmat-Lab. DETEMA. Facultad de Química Centro Nano*Mat* PTP-Pando, Facultad de Química

Aprovechamiento de la Energía Solar

- Sol
- Limpia y renovable
- Convertible

fuente: http://www1.eere.energy.gov/solar/pv_systems.html http://thomashawk.com/hello/209/1017/1024/Staring%20at%20the%20Sun.jpg

Best Research-Cell Efficiencies

TINAL RENEWABLE ENERGY LABORATORY

Celdas Solares DSSC

- Funcionamiento equivalente a las de Si
- Los electrones se arrancan del colorante y se inyectan en TiO₂, para transportarlo fuera de la celda
- Los "huecos" permanecen en la tinta
- La separación hueco-electrón genera un voltaje y corriente

Celdas solares de sensibilización espectral (Celdas solares sensibilizadas con colorantes, DSSC)

•Grätzel M., Inorg. Chem. 2005, 44, 6841 •Faccio R: Fernández-Werner L · Pardo H · W Mombrú A

•Faccio, R; Fernández-Werner, L.; Pardo, H.; W. Mombrú, A. Recent Patents on Nanotechnology 2011, 5(1), 46-61.

20kU X7,500 2µm

20kU ×10,000 1.4m

• HRTEM: nanorods de TiO₂

TEM: Nanotubos de TiO₂

Print Mag = 8388x @ 6.99999969005585 mm

Acquired Oct 2 2012 at 11:46 AM

Print Mag = 13979x @ 6.999999969005585 mm Acquired Oct 2 2012 at 11:41 AM 100 nm HV=100kV TEM Mag = 250000x AMT Preferred Customer 100 nm HV=100kV TEM Mag = 150000x AMT Preferred Customer

BI TiO2 001

Acquired Mar 30 2012 at 9:15 AM

100 nm

HV=100kV TEM Mag = 150000x AMT Preferred Customer • Ensamblado de Dispositivos

Simulador Solar:

 Solar Cell Testing 1000W Light Source – Model LS1000 de Solar Light el cual provee 1000W/m² AM 1,5 en el plano de trabajo

Caracterización Eléctrica

Prototipo	I _{sc} (mA)	$J_{sc}(mA/cm^2)$	V _{oc} (mV)	FF(%)	n(%)
1	9.0	3.1	680	39	0.82
2	0.62	0.22	590	46	0.06

Preparación de óxidos precursores para CIGS

- Los precursores óxido de cobre e indio han sido sintetizados por el método de complejación-combustión de Pechini usando acido cítrico y etilenglicol.
- Las cantidades requeridas de CuCl₂.2H₂O e In(NO₃)₃.4H₂O son disueltas en agua desionizada a T=50°C bajo agitación y se agrega acido cítrico (AC) y etilenglicol (EG) en la siguiente relación molar M:AC:EG = 1:2:2.
- La solución obtenida es calentada a 90-100°C durante 5 horas hasta la formación del gel, luego es secado a 150°C durante 4 horas (CIS_1) y posteriormente calcinado a 500°C durante 8 horas para obtener los óxidos precursores (CIS_2).

Preparación de tintas para películas delgadas

- Se ensaya la preparación de la pasta para realizar el depósito de la película fina del precursor por el método de spin-coating.
- La pasta está compuesta por butil-carbitol (BC-solvente), etilcelulosa (EG-sellante) y polietilenglicol (PEG-dispersante) |en la relación en peso CIS_2:PEG:EC:BC que se detallan a continuación:

	CIO	PEG	EC	BC	N	Speed
	(mg)	(mg)	(mg)	(<u>mL</u>)	(80seg.)	(rpm)
1:1.5:2:60	30,8	46,2	61,6	1,5	3 coatings	1500-2500

- El depósito es calentado a 600°C en mufla durante 4 horas para eliminar los componentes de la pasta y obtener así la película de los óxidos precursores (CIS_2) sobre el sustrato vidrio:ITO (óxido de indio y estaño).
- La sulfuración se realiza a 450°C en flujo de Ar 99.9% en presencia de exceso de azufre en una zona de T= 300°C durante 1 hora (CIS_3).

Buscando alternativas

Buscando nichos

Leijtens et al, Nature Comm. DOI: 10.1038/ncomms3885 Celdas basadas en Perovskitas

A la búsqueda de captar fotones en el infrarrojo

Se usa una aproximación a través de un nanomaterial híbrido

Aceptor – M – Donor

Ab Initio Study of $V_n(C_{60})_m$ Complexes

J. Phys. Chem. A, Vol. 113, No. 18, 2009

C60 (lh)

Perylene D2h

Coronene D6h

Coronene

Perylene Fe at Hollow position

HOMOa

LUMOa

Perylene

 \mathbf{L}

Barr et al, Adv. Mater. 2011, 23, 3500-3505

Geometrías de Haz de Rayos X

 Geometría Para focalizante Bragg-Brentano

 Geometría Haz paralelo, Cross-Beam-Optics CBO

Multi Purpose Attachment:

- Parallel Beam
 - Superficies rugosas y curvas
 - Textura
 - Stress residual
 - Estructuras nanoporosas, distribución de tamaño

- Thin Films
 - Espesor, densidad y rugosidad de films
 - Caracterización epitaxial
 - GIXRD

Variedad de Configuraciones

XRD Convencional

4-Bloques de construcción wires slabs • • • • • • • • • • • • • • bulk 🛉 🔘 🔹 🔘 0.0.0.0.0.0.0.0.0.0

Ajustes globales de perfil: Rietveld

Debye Fitting:

Scherrer Peak fiting

tamaño 19.2 14.9 nm

• XRR de capa fina de Au

Layername: Au Thickness: 103.7(12)nm Density: 18.73(10) Roughness: 1.861(8)

Layername: Cr Thickness: 8.48(16)nm Density: 2.68(12)

Substrate name: GLASS Density: 2.21 Roughness: 0.50

ID	Material	Thickness (nm)	Density (g/cm3)	Roughness (nm)
2	Au	103.7(12)	18.73(10)	1.861(8)
1	Cr	8.48(16)	2.68(12)	0.684(7)
Sub.	GLASS	0.0[]	2.21[]	0.50[]

Rocking Curve

SAXS reflectometria

Selección de Bloques

Muchas gracias

