

Diseño de un sistema on-line de producción electrolítica de hidrógeno y almacenamiento como hidruros metálicos para su uso en celdas de combustible

Difusión de Proyectos FSE de ANII 2009

DENSIDAD DE ENERGÍA DE COMBUSTIBLES

Combustible	Energía Especifica [kJ/g]	Densidad de Energía [kJ/l]
Carbón	29.3	-
Madera	8.1	-
Gasolina	43.5	30590
Diesel	42.7	29890
Metanol	19.6	15630
Gas natural	50.02	31.7
Hidrógeno	119.9	10

Objetivo General

Diseño de un dispositivo para la producción y almacenamiento de hidrógeno para su uso *on-line* en celdas de combustible utilizando nuevos catalizadores eficientes.

Verificación

Obtención de curvas de carga/descarga vs. tiempo para nuevas aleaciones AB2 y AB5 modificadas por molibdeno.

Obtención de curvas de polarización estables para sustratos tipo Espinelas de níquel y molibdeno.

Diseño de un circuito cerrado desde el electrolizador alcalino hacia el almacenador dirigido a la celda de combustible.

Etapas en la Tecnología de Hidrógeno

1) Producción del combustible

a) Electrólisis del agua

b) Reformado de hidrocarburos, biocombustibles, etc.

2) Almacenamiento y transporte

a) Nanotubos estructurados de carbono
b) Hidruros metálicos de litio y paladio
c) Crioalmacenamiento (ciclo Linde)
d) Compresión a presiones ca. 170 atm.

3) Conversión en energía eléctrica
a) Electroquímica por pilas/baterias
b) Convencional térmica

4) Recuperación para la sustentabilidad

a) Retro-electrólisis sobre platino/paladio en álcalis

b) Descomposición catalítica en óxidos de tierras raras

Reformado

2. El combustible vaporizado se fragmenta en unidades más pequeñas en un reactor.

4. En el reactor se elimina el exceso de monóxido de carbono con catalizadores.

ELECTRÓLISIS

BAJA TEMPERATURA

 $H_2O_{(I)} \rightarrow \frac{1}{2}O_2 + H_2$ T = 100°C E_{rev} = 1.2 V E_{celda} = 1.5 - 1.8 V

Cinética de reacción lenta

 $H_2O_{(v)} \rightarrow 1/2 O_2 + H_2$ $T = 1000^{\circ}C$ $E_{rev=}0.8 V$ $E_{celda} = 1.0 - 1.3 V$

ALTA TEMPERATURA

Cinética de reacción rápida

Voltagrama de Pt en H_2SO_4 1M (negra) y en H_2SO_4 1M + Na_2MoO_4 10⁻² M (roja).

Voltagrama de Pt en KOH 0.5M (negra), KOH 0.5M + Na_2MoO_4 10⁻² M (roja), KOH 0.5M + Na_2MoO_4 10⁻² M+ NiSO₄ 2 10⁻³ M (verde). v= 10 mVs⁻¹

Voltagrama de Ni en H_2SO_4 1M (negra), H_2SO_4 1M + NiSO₄ 0.001M (roja) y 0.002M (verde). v= 10mVs⁻¹ Voltagrama de Ni en H_2SO_4 1M (negra), H_2SO_4 1M + Na₂MoO₄ 0.01M (roja), 0.02M (verde), 0.04M (azul). v= 10mVs⁻¹

Curvas de Tafel para liberación de H_2 sobre Ni en H_2SO_4 1M (negro) y en H_2SO_4 1M + Na_2MoO_4 0.01M (rojo) ; 0.02M (verde); 0.04M (azul) obtenidas de las curvas de polarización barridas a 0.5 mV s⁻¹.

Descarga electroquímica de Volmer con formación de adsorbato

 $j_0 = 10^{-3.5} \text{ A cm}^{-2}$

similares a Pt

 $x[NiH]_{ads}.MoO_{3(s)} \rightarrow y[NiH]_{ads}.MoO_{3(s)} + (x-y)e_{(Ni)}^{-} + (x-y)H_{(ac)}^{+} con x > y$

Curva de polarización lineal para el desprendimiento de H₂ barrida a 0.5 mV s⁻¹ partiendo de 0 V en KOH 1M sobre Ni sin tratar (negra) y tratado con onda cuadrada de 500 Hz (roja) y 3 KHz (azul) de frecuencia. En todos los casos la amplitud fue 1.45 V y el *offset* 0.275 V

ALMACENAMIENTO DE HIDRÓGENO

<u>Almacenamiento en forma gaseosa:</u>

- El hidrógeno se almacena a alta presión (P > 20 MPa).
- Requiere depósitos pesados y voluminosos.
- Plantea problemas de seguridad.
- No resulta competitivo debido a su elevado costo.

<u>Almacenamiento en forma líquida:</u>

- El hidrógeno se almacena en estado líquido en recipientes criogénicos.
- Requiere alcanzar temperaturas de almacenamiento muy bajas (21,2 K).
- Su costo es elevado. Indicado sólo para aplicaciones donde el almacenamiento no sea un factor crítico y éste sea consumido en cortos periodos de tiempo (por ejemplo, en aplicaciones aeroespaciales).

ALMACENAMIENTO DE HIDRÓGENO

Combinación química (hidruros metálicos):

- Diversos metales de transición y sus aleaciones pueden ser utilizados para almacenar hidrógeno en forma de hidruros metálicos.
- El principal inconveniente es el elevado peso del sistema de almacenamiento, como consecuencia de los bajos niveles de retención de hidrógeno que se consiguen (< 2% a temperaturas inferiores a 423 K).

Adsorción en sólidos porosos (nanoestructuras de carbono):

- Se está estudiando la utilización de nanoestructuras de carbono con elevada superficie específica como medio de almacenamiento.
- Sería una forma segura y sencilla de almacenar el hidrógeno sin usar altas presiones.

ALMACENAMIENTO DE HIDRÓGENOESTRUCTURAS SÓLIDAS

mecanismo generalizado de Volmer-Tafel-Heyrovský

- Reacción de descarga electroquímica de Volmer:
 M + H₂O + e- = [MH]_{ads} + OH-
- Reacción de recombinación de Tafel
 2 [MH]_{ads} = 2 M + H₂
- Reacción de recombinación electroquímica de Heyrovský
 [MH]_{ads} + H₂O + e- = M + H₂ + OH-
- $[MH]_{ads} = [MH]_{abs}$
- [MH]_{abs}= MH(hidruro) (hidruración química)
- 2 MH(hidruro) = 2 M + H₂ (seno metálico)

ALMACENAMIENTO DE HIDRÓGENO

ESTRUCTURAS SÓLIDAS

ESTRUCTURAS SÓLIDAS

•El hidruro de magnesio, MgH₂, posee la más alta densidad de energía (9 MJ/kg de Mg) en condiciones de almacenamiento reversible. Su capacidad es cercana al 7.7 % en peso con el beneficio de un muy bajo costo del magnesio con alta reversibilidad.

•Las desventajas del MgH₂ son las altas temperaturas requeridas para la descarga de hidrógeno, lenta cinética de desorción y gran reactividad frente al oxígeno que lo hace sumamente inestable. Esa temperatura tan alta de descarga (300 C para 1 bar de hidrógeno molecular) lo hace inapropiado para el uso de vehículos eléctricos además de la alta estabilidad termodinámica del hidruro.

•El Mg₂Ni preparado por aleado mecánico (buena homogeinización) es el mejor sustituto.

ALMACENAMIENTO DE HIDRÓGENO ESTRUCTURAS SÓLIDAS

La aleación base LaNi₅ de la clase AB5 generalmente es sustituida por diversos elementos para mejorar el ciclo de vida, la resistencia a la corrosión del medio y el desempeño frente a la hidruración.

Horno de arco eléctrico para la fabricación de las aleaciones hidrurables

Estructura cristalina de LaNi₅

Caracterización física por difractometría de las aleaciones AB_5 M0, M1, M2, M4 luego de sustituir Mn por Mo.

La Ni_{3,6} Co_{0,7} Mn_{0,4} Al_{0,3} , rotulada AB_5M0 La Ni_{3,6} Co_{0,7} Mn_{0,3} Mo_{0,1} Al_{0,3} , rotulada como AB_5M1 y La Ni_{3,6} Co_{0,7} Mn_{0,15} Mo_{0,25} Al_{0,3} , rotulada como AB_5M2

Micrografías de Barrido Electrónico de las aleaciones AB₅ M0, M1 y M2.

Elección del metal (Mo) a utilizar para la sustitución de Cr y Mn en las aleaciones AB2 y AB5. Síntesis de las aleaciones.

Curvas *ECT*. Potencial libre en función del porcentaje de carga para AB₅ M0, M1 y M2

Diagrama de Nyquist a 30% de estado de descarga de las aleaciones AB₂ M0, M1 y M2

Relación atómica para aleaciones $AB_2 M0$, M1 y M2 obtenidas a partir de estudios de espectroscopía dispersiva de energía.

	Zr	Cr	Ni	Мо
AB ₂ M0	1	0.9	0.9	-
AB ₂ M1	1	0.6	0.7	0.3
AB ₂ M2	1	0.3	0.7	0.5

R_{ct} or R_p

Parámetros de ajuste de Impedancia Electroquímica para AB₂MO, AB₂M1 y AB₂M2 en un modelo de ajuste de Randles.

 $R_{sol}/\Omega \text{ cm}^{-2}$ R_{ct}/Ω cm⁻² CPE Ρ $C_{dl}/F cm^2$ τ /s α AB₂M0 0,64 1,12 19,43 0,85 0,15 0,58 11,32 AB₂M1 0,56 1,76 4,31 0,83 0,17 0,48 2,07 AB₂M2 3,69 0,66 1,00 5,84 0,84 0,16 0,63

Modificación de la capacidad en función del número de ciclos de carga/descarga para las aleaciones AB₂ M0, M1 y M2

Diseño de productor-almacenador-celda de H2/O2

Diagrama de Flujo pormenorizado para el productor de hidrógeno (electrolizador), almacenador de hidrógeno (hidruros) y la alimentación posterior en la celda de combustible

Diseño de productor-almacenador-celda de H2/O2

Curva de operación de la celda de 500 W instalada para alimentación de H_2/O_2

Núcleo Interdisciplinario de Ingeniería Electroquímica

