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Abstract: A major goal in satellite remote sensing of fire is to derive globally accurate measure-
ments of the spatial and temporal distribution of burning. To date, the main sensor employed in
fire and fire-scar detection has been the Advanced Very High Resolution Radiometer (AVHRR)
on board NOAA polar-orbiting platforms. Other sources supporting fire observation over large
areas include the Defense Meteorological Satellite Program – Optical Linescan (DMSP-OLS), the
Geostationary Operational Environmental Satellite – 8 (GOES-8) and the Along Track Scanning
Radiometer (ATSR). These sources have often been used in conjunction with high spatial-
resolution imagery provided by the Landsat Thematic Mapper and SPOT to assess the accuracy
of proposed fire and fire-scar retrieval algorithms. 

Although a range of fire detection algorithms have been proposed based on more than a
decade of research on the AVHRR data, it remains to be seen whether variations in land-cover
type, surface temperature and fire regimes will permit application of global thresholds of
temperature and reflectance. Moreover, the emerging set of satellite sensors with demonstrated
utility in fire monitoring indicates substantial possibilities for greater synergy of current and
future remote-sensing systems leading to improved monitoring of fire extent and frequency. As
a more complete global picture of biomass burning emerges with the launch of new sensors for
fire monitoring (e.g., MODIS), this information, combined with detailed data from field
experiments, can help provide reliable budgets of trace gases and particulate species that affect
global energy balance and climate.
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I Introduction

Scientists have long recognized the role of fire in shaping the structure of vegetation
communities and landscapes. Decades of ecological research have shown that fire
regimes generally vary as a function of the vegetation type, weather and climate and
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land-management practices (e.g., Pyne, 1995; Whelan, 1995). Burning experiments
based in tropical, temperate and boreal regions have also shown that fires each year
produce a substantial flux of trace gases and aerosols from the biosphere to the
atmosphere. Although considerable uncertainty remains about relative and absolute
quantities of pollutants produced, evidence indicates that biomass burning accounts for
about 40% of annual anthropogenic CO2 emissions and about one-quarter of anthro-
pogenic particulate matter, respectively (Levine, 1996). Studies of fire and its impacts
have also increasingly emphasized biomass burning as a major driving force in anthro-
pogenic land-cover change, especially in the tropics (Mueller-Dombois and
Goldammer, 1990; Cochrane et al., 1999). Recent episodes of biomass burning in the
forests of southeast Asia, South America and the southern USA associated with the El
Niño Southern Oscillation (ENSO) event of 1997–98 have underscored the need for
more research on the environmental impacts of these and other vegetation fires
(Goldammer, 1999).

One of the major obstacles to achieve greater understanding of global fire frequency
and extent has been a lack of reliable observations of fire and its immediate signature,
charred material, over large areas. Burned material deposited after fires, commonly
referred to as ‘fire scars’ in the scientific literature, consists mainly of ash and black
carbon or charcoal, which contains of a range of carbon-based molecules from
polycyclic aromatics to elemental carbon or graphite (Kuhlbusch and Crutzen, 1996).
Because of its inertness, charcoal may remain in the environment for centuries or
millennia where it is often detected in sediment cores and in tree rings (Goldammer and
Siebert, 1990; Firescan Team, 1996; Goldammer et al., 1996). However, immediate
surface deposition of ash and charred material following fire provides an opportunity
for remote observation using space-based sensors.

Satellite remote sensing has played a growing role in fire detection and monitoring
over the past two decades (Justice et al., 1993). Whereas fire scars generally contrast
strongly with unburned surfaces in the visible (0.4–0.7 µm), near infrared (0.7–1.5 µm)
and middle infrared (1.5–4 µm or MIR) portions of the electromagnetic spectrum,1
researchers often use thermal detectors operating from about 4 to 15 µm to identify
active fires. Recently, however, sensors operating in the visible wavelengths have also
been used in active fire detection (Elvidge et al., 1996). The emerging set of satellite
sensors with demonstrated utility in fire monitoring indicates substantial possibilities
for greater synergy of current and future remote-sensing systems leading to improved
monitoring of fire extent and frequency (Justice et al., 1993; Barbosa et al., 1998; Eva and
Lambin, 1998a; 1998b). The goal of this article is to provide an overview of several
recent advances and to describe the potentials and limitations of current optical and
thermal remote-sensing systems (Table 1) for fire evaluation and mapping. 

II Detection of active fires

1 General considerations

The use of satellite observations to detect fires poses a number of significant challenges.
Although some wild fires may burn for days or weeks, fires generally occur as
ephemeral events that may not coincide with the timing of the orbital overpass. Fires
may also smoulder at or below ground level at low temperature then later reach high
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temperatures in the flaming stage if sufficient dry fuel and oxygen are available.
Moreover, clouds and smoke from fires often obscure the surface and therefore cause
many fires to be missed by satellite sensors. Thus low-overpass frequency combined

Table 1 Characteristics of some current and planned satellite sensors for fire and fire-scar detection

Sensor Major Spatial Swath Bands Major Major
applications resolution width (µm range) advantages limitations

AVHRR Active fires 1.1 km 2400 km 0.58–0.68 Widely 325 K
Fire scars 0.72–1.10 available, low saturation in

3.55–3.931 cost, high channel 3
10.3–11.3 temporal
11.5–12.5 frequency

DMSP-OLS Active fires 0.56 km 3000 km 0.58–0.91 High Night-time
2.07 km 10.3–12.9 sensitivity; use only during

high temporal low lunar
frequency illumination

SPOT-4 Fire scars 10 m PAN 60 km 0.50–0.59 High spatial Low temporal
from 0.61–0.68 resolution, frequency, low
0.61 to 0.68 µm 0.79–0.89 MIR band area coverage,
20 m MS2 1.58–1.75 high cost

SPOT Fire scars 1 km 2000 km 0.43–0.47 MIR band, large Unknown
vegetation 0.61–0.68 areas covered,

0.78–0.89 high temporal
1.58–1.75 resolution

Landsat Fire scars 15 m PAN4 0.45–0.52 MIR band, Low temporal
TM and 30 m MS 185 km 0.52–0.60 high spatial resolution, high
ETM+3 0.63–0.69 resolution, cost6

0.76–0.90 well-known
1.55–1.75 data
10.4–12.55 source
2.08–2.35

GOES-8 Active fires 1 km Hemisphere 0.52–0.72 Very high Coarse spatial
(visible) 3.78–4.03 temporal resolution;
4 km 6.47–7.027 resolution 3.9 µm band
(infrared 10.2–11.2 saturates at
channels) 11.5–12.5 335 K

ATSR8 Fire scars 1 km 500 km 3.51–3.89 Good spectral Unknown
1.57–1.63 configuration
10.4–11.3 for fire-scar
11.5–12.5 mapping

MODIS Active fires 250 m 2330 km 36 bands Saturation of Unknown
Fire scars 500 m including 450 K at

1 km 3.9 and 4 µm and
11 µm 400 K at 11 µm

Notes:
1NOAA recently launched an AHVRR on NOAA-15 with a new channel 3a centred at 1.6 µm.
2PAN = panchromatic, MS = multispectral.
3Enhanced Thematic Mapper launched in early 1999 on Landsat-7.
4Only available on the ETM. 
5120 m resolution.
6Landsat-7 data products will be supplied to the scientific community at greatly reduced costs.
78 km spatial resolution.
8Only ATSR-1 is reviewed here, although ATSR-2 has similar potential in fire mapping.
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with fire variability and high cloud cover often lead to serious underestimation of fire
extent with remote sensing. 

Furthermore, many current remote-sensing systems were not designed explicitly for
fire monitoring, but mainly for vegetation, oceanic and atmospheric studies. Since these
features normally possess temperatures below 300 K, high temperatures associated
with most fires, which typically range from about 400 to 1200 K, produce saturation in
the middle infrared and thermal channels of most sensors. The term ‘saturation’ is used
widely to describe the problem in which a temperature greater than a certain amount
receives a maximum value in the output range of the sensor. Some sensors saturate at
such low temperatures that warm land surfaces and fires cannot be distinguished, and
thus saturation may lead to overestimation of fire extent. Saturation also precludes
accurate estimation of fire temperatures, which relate directly to emissions of particu-
lates and trace gases (Albini, 1993).

2 The NOAA-AVHRR

Despite these challenges, satellite sensors such as the Advanced Very High Resolution
Radiometer (AVHRR) on board polar-orbiting satellites of the US National Oceanic and
Atmospheric Administration (NOAA) have provided a great deal of information on
f i res (Cracknell, 1997), especially in remote areas where fires are not normally
monitored by other means. Although never intended for fire monitoring, the AVHRR
has provided a source of information on biomass burning since 1981 (Justice et al., 1993;
Malingreau and Grégoire, 1996; Setzer and Malingreau, 1996). AVHRR data have been
applied widely to study fires in the savannas of Africa (Belward et al., 1994; Kennedy et
al., 1994; Razafimpanilo et al., 1995; Justice et al., 1996; Barbosa et al., 1998; Eva and
Lambin, 1998b), where one-third of all carbon emissions from biomass burning are
thought to originate (Andreae, 1991). AVHRR data have also been applied extensively
to South American forests and savannas to study both active fires and scars (Kaufman
et al., 1990; Setzer and Pereira, 1991; Pereira and Setzer, 1993b). Recent studies have also
relied on the AVHRR for fire detection in the maquis of the Mediterranean (Chuvieco
and Martín, 1994; Illera et al., 1996; Fernandez et al., 1997; Pozo et al., 1997) and in boreal
forests of Alaska and Russia (Kasischke et al., 1993; Kasischke and French, 1995; Rauste
et al., 1997). 

One of the most common AVHRR-based methods for active fire detection involves
the application of single temperature thresholds to AVHRR channel 3 (Table 1) day and
night passes (Justice et al., 1993; Chuvieco and Martín, 1994; Setzer and Malingreau,
1996). The use of night-time passes generally eliminates the problem of low saturation
(~ 322–325 K) in channel 3 daytime passes as well as the reflection of solar radiation,
particularly sun glint off water surfaces and bright soils. However, several studies
(Malingreau, 1990; Prins and Menzel, 1994) have shown that fire occurrence and spread
tend to be greatest near solar noon (Figure 1) when winds and low relative humidity
favour fire spread. Therefore, the use of night-time AVHRR passes may underestimate
the extent and number of fires substantially. Moreover, for the single threshold
algorithm to operate effectively, different thresholds may need to be developed for a
given region and season of interest. 

Conversion of at-satellite radiance values to surface temperature depends upon a
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number of factors including the emissivity of the objects in the satellite field of view, the
atmospheric attenuation caused by gases and aerosols and other sources of thermal
radiance originating from the upwelling atmospheric radiant flux, and the satellite itself
(Qin and Karnieli, 1999). Although the total atmospheric attenuation may be estimated,
this is rarely done for remote areas where in situ measurements of aerosol optical depth,
water vapour, CO2, CO and other absorbing gases are often not available. Another
important problem is that vegetation fires themselves generate a large flux of absorbing
species (particularly CO2, CO and ozone) and these gases are likely to be spatially het-
erogeneous within a satellite image. Further, calibration of the AVHRR thermal
channels 3–5 relies on a certain set of assumptions (Kidwell, 1991) that may not be valid,
especially for channel 3 (Setzer and Malingreau, 1996). Thus, given the uncertainty over
these factors it is difficult to ascertain the errors involved in the estimation of channel 3
temperature. 

The number of fires detected using the single-threshold method also appears to vary
greatly depending on the value applied. Figure 2 provides an example of detected fires
in three maps covering Kalimantan on 6 August 1997 in which thresholds of 310 K, 315
K and 321 K were applied to a channel 3 daytime image. This example shows that the
number of detected fires may range over an order of magnitude with a change of only
6 K in the threshold, with many fire pixels probably misclassified owing to saturation
below 315 K. In response to the saturation problem, Flasse and Ceccato (1996)
developed a contextual or neighbourhood approach based on channel 3. Their
algorithm selects fire pixels if sufficient contrast exists between a high-temperature
pixel and its neighbours, provided the temperature of the central pixel is above a certain
minimum. 

Other algorithms rely on a set of thresholds involving multiple AVHRR channels. For

Figure 1 Schematic diagram depicting the diurnal cycle of fire in
relation to the timing of overpass of orbital platforms that provide
broad-area coverage
Source: Adapted from Malingreau and Grégoire, 1996
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Figure 2 Active fires detected in Kalimantan, western Indonesia with
three different temperature thresholds applied to AVHRR channel 3
daytime images, 6 August 1997. Each dot represents an active fire: (a)
310 K; (b) 315 K; (c) 321 K

(a)

(b)

(c)
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example, Kaufman et al. (1990) developed an algorithm for Amazonian forest fires that
applied three thresholds to AVHRR channels 3 and 4. In their algorithm, a pixel is
classified as containing a fire if channel 3 ≥ 316 K, channel 3 minus channel 4 ≥ 10 K and
channel 5 ≥ 250 K (Kaufman et al., 1990). Kennedy et al. (1994) showed that thresholds
such as these developed for a humid environment produced extensive saturation in dry
savannas of west Africa. They tested and refined Kaufman’s method for savanna fires
by increasing the threshold values and adding a fourth criterion that channel 2
reflectance ≤ 16%. This final criterion helped eliminate areas associated with sun glint
and reduced saturation effects substantially.

A hybrid approach developed by Justice e t a l. (1996) involves both multiple
thresholds and neighbourhood analysis. Although applied to savanna fires in southern
Africa, their approach is intended to have wider application. Like other algorithms, it
involves thresholds to channels 3 and 4 with the addition of the following test: ∆T34 >
∆Tb34 + 2 σ ∆Tb34 where ∆T34 is the difference in the brightness temperature between
channels 3 and 4 and ∆Tb34 is the average difference between the response in channels
3 and 4 in a neighbourhood around the pixel being tested and σ∆Tb34 is the standard
deviation of ∆Tb34.

Although the use of neighbourhood statistics represents a significant advance that
should lead to wider applicability, Setzer and Malingreau (1996) have questioned the
use of channel 4 in AVHRR-based fire algorithms because its sensitivity to smoke
plumes may produce inconsistent results. Moreover, uncertainties over the calibration
of channel 3 have also been raised by Setzer and Malingreau (1996), who recommend
application of thresholds to raw channel 3 digital counts in areas with low channel 1
reflectance and which have mapped fires consisting of less than 20 contiguous pixels. 

A recent modelling study conducted by Giglio et al. (1999) suggests that three
different algorithms (Arino et al., 1993; Flasse and Ceccato, 1996; Justice et al., 1996) will
produce similar results in different biomes for large fires (> 1000 m2). However, for
small fires the authors also found these algorithms will perform differently depending
on smoke, neighbouring fires and biome type. Because the methods proposed and
developed by Justice et al. (1993), Setzer and Malingreau (1996), Flasse and Ceccato
(1996) and others (e.g., Randriambelo et al., 1998) have yet to be compared systemati-
cally and validated with field observations over a range of different land-cover types, it
remains to be seen which will become the most widely accepted. Moreover, inherent
environmental variability may necessitate the adjustment of different AVHRR-based
thresholds among different biomes and seasons. 

3 DMSP-OLS and GOES-8

The Defense Meteorological Satellite Program – Optical Linescan System (DMSP-OLS)
provides another remotely sensed data source for fire mapping (Cahoon et al., 1992;
Elvidge et al., 1996). The DMSP-OLS on board US Air Force orbital platforms possesses
a wide swath (and hence high overpass frequency) and high sensitivity to night-time
fire observations in its visible to NIR waveband (0.58–0.91 µm). This high sensitivity to
light sources is achieved via a photomultiplier tube that allows improved detection of
active fires relative to current thermal sensors (Elvidge e t a l., 1996). Its use in
conjunction with AVHRR, for example, may provide a way to reduce potential
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uncertainty over AVHRR temperature thresholds as suggested by Fuller and Fulk
(2000).

The NOAA National Geophysical Data Center serves as the archive for DMSP-OLS
data. The NGDC has developed a fire algorithm that uses a database of stable light
sources associated with urban areas to distinguish ephemeral light sources (e.g., fires
and gas flares) on the land surface (Elvidge et al., 1996). However, the DMSP-OLS is
likely to overestimate the number of active fires substantially because the data are
generally collected at a spatial resolution of 2.7 km. Overlap between adjacent pixels
means that a single fire may be counted in up to six DMSP-OLS pixels (Elvidge et al.,
1996). Fortunately, DMSP-OLS data are now being collected and archived at 0.56-km
resolution, which will increase its utility substantially in night-time fire monitoring
(Elvidge, pers. comm.).

As mentioned above, estimation of fire extent may depend strongly on the time of
satellite overpass (Figure 1). However, geostationary satellites such as the
Geostationary Operational Environmental Satellite (GOES) and Meteosat, which
possess middle and thermal-infrared bands, may reveal the relative magnitude of
diurnal effects by providing observations every 30 minutes. While the sensor on board
Meteosat may be used for detection of smoke plumes, the 3.9 µm channel of GOES-8
permits detection of active fires as well as smoke. Although much coarser than the
AVHRR at 16 km spatial resolution, previous GOES instruments (GOES-4 and GOES-7)
have also been used to show a strong diurnal signature in biomass burning over South
America. Prins and Menzel (1994), for example, showed that the area burning in South
America was two to five times greater in the early afternoon than at other periods.
Moreover, Menzel and Prins (1996) demonstrated that GOES-8 (launched in 1994)
provides improved fire detection relative to previous GOES instruments since the
3.9 µm channel saturates at a minimum of 335 K and has a spatial resolution of 4 km.
GOES-8 fire observations have been validated in Colorado, USA (Weaver et al., 1995)
and in Costa Rica (Alfaro et al., 1999). Although, like AVHRR channel 3, the 3.9 µm
channel on GOES-8 may be adversely affected by sun glint from water bodies and
bright soil surfaces, it is surprising that it has not been used more for fire detection
given its high temporal resolution, high temperature saturation relative to the AVHRR
and large spatial coverage (Table 1).

4 MODIS

Numerous field experiments (e.g., Levine, 1996) have shown that the concentration of
trace gases such as CO, CO2, NH4 and volatile organic compounds in smoke plumes
varies as a function of fire temperature and fuel type. Therefore, remote measurements
of fire temperature may be used to draw qualitative inferences about gaseous
emissions. The need for more information on fire temperatures from remote sensing has
led to the inclusion of two fire channels in the Moderate Resolution Imaging
Spectrometer (MODIS) to be launched by NASAon the EOS-AM1 and PM1 platforms.
MODIS fire channels are centred at 3.9 µm and 11 µm, which are designed to saturate
at 450 K and 400 K, respectively (Justice et al., 1998). Since smouldering fires tend to
produce more emissions than flaming fires and also tend to be cooler than 600 K, it is
expected that MODIS-based algorithms will be able to distinguish fires in their flaming
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and smouldering stages. Prototype fire-detection algorithms using the MODIS fire
channels are based largely on research using the AVHRR sensor and will involve a
range of multiple thresholds and neighbourhood characterization (Justice et al., 1998;
Kaufman et al., 1998). Moreover, the overpass frequency of MODIS-carrying platforms
will enable better estimation of the diurnal fire cycle. NASAintends to launch two such
platforms, the first of which will have local overpass times of 10.30 am/pm and the
second will possess overpass times of 14.30 (Figure 1). 

III Detection and mapping of fire scars

1 Rationale for study

Several studies have shown that very small fires (~ 10–4–10–3 km2) may produce the
same sensor response in the thermal infrared as large fires that potentially burn large
areas (Matson and Dozier, 1987; Kaufman et al., 1990). Therefore, satellite-based maps
depicting active fires generally do not provide a good representation of burned area
unless checked carefully against high-resolution imagery (Scholes e t a l., 1996a).
However, through fire-scar detection and mapping, remote sensing provides a way to
improve scaling of carbon flux from the biosphere to the atmosphere. Prior to the use
of satellite data, calculation of carbon emissions at regional to global scales involved
classifying vegetation into broad types and estimating the fuel load, frequency of
burning and fraction of biomass consumed within each type. Data on vegetation char-
acteristics have often been obtained from small-area studies that may not have
represented the fuel and fire situations over large areas. The total emissions from
burning were then calculated as the product of the area of each type and its emission
summed over all vegetation types (Kendall et al., 1996; Scholes et al., 1996a). Since
satellite data provide reliable information on burned area and the functional character-
istics of vegetation (e.g., canopy cover, above-ground biomass and foliar moisture
content), assumptions of spatial homogeneity per vegetation class are no longer
needed.

Another advantage to using fire scars in emissions modelling is that they are less
ephemeral than fires themselves (Eva and Lambin, 1998b; Roy e t a l., 1999).
Furthermore, interest in mapping of burned area has recently increased in the wake of
the catastrophic fires of 1997–98 in southeast Asia and Amazonia, which may have
d e s t royed large areas of forest (Goldammer, 1999). In particular, enviro n m e n t a l
scientists and policy-makers are interested to know how much area burned in different
land-cover types during these events, the amount of area burned relative to past ENSO-
related fires as well as the economic consequences of fires in tropical forests (Anon,
1997; Schweithelm and Glover, 1999).

The literature on fire scar reflectance and duration remains very limited (e.g.,
Frederiksen et al., 1990) and more studies of these properties are clearly needed. As
several authors have noted (e.g., Kendall et al., 1996; Roy et al., 1999), blackened,
carbonized material deposited on the surface after fires may also be transported by
wind and water or covered quickly by canopy litter or regenerating canopies over a
matter of days or weeks. The rate at which these features change is likely to vary widely
from biome to biome and season to season. In addition, fire-scar duration relates to the
frequency of cloud cover, since high cloud cover will reduce the number of possible
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observations of a given fire scar or set of scars.
High-spatial resolution data provided by the Landsat Thematic Mapper (TM) and

SPOT XS have enabled limited study of the spectral and spatial properties of burns,
although their temporal frequency and spatial coverage are very low (Table 1). High
spatial-resolution images also provide an important intermediate scale to link broad-
scale observations (e.g., AVHRR) with field data. Systems such as SPOT and Landsat
also possess spectral bands that are more appropriate for fire-scar detection than
systems designed primarily for ocean and atmospheric applications (e.g., GOES and
AVHRR). Figure 3 provides an example of the response of channels 4 and 5 of Landsat
TM across a range of burned and unburned cover types in South Kalimantan,
Indonesia, acquired after major burning in December 1997. Contrasting reflectance of
fire scars in the NIR and MIR suggests that new MIR-based indices may be created (e.g.,
Pereira and Setzer, 1993a; Pereira, 1999) that may relate to chemical contents of burned
material or the mass of char deposited at the surface. Unlike vegetation indices (VIs),
however, fire-scar indices have yet to be examined in light of biochemical and physical
properties of burned surfaces.

2 Time-series of vegetation indices

One widely used approach for fire-scar detection involves analysis of time-series of
vegetation indices, the most common of which is the normalized difference (NDVI).

Figure 3 Behaviour of Landsat TM channels 4 and 5 across a transect
of 800 pixels which cover a range of cover types in South Kalimantan,
Indonesia, after major ENSO-related burning episodes (16 December
1997). Channel 5 is the MIR band and clearly shows elevated values
over fire scars relative to channel 4
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NDVI is strongly correlated with green vegetation cover, photosynthetic activity and
primary production (Prince, 1991; Goward and Huemmrich, 1992) and is calculated
from the expression (NIR – red)/(NIR + red), where NIR and red are reflected radiance
or reflectance values in the near infrared and red portions of the electromagnetic
spectrum. NDVI ranges from about –0.2 for certain exposed soil surfaces to approxi-
mately 0.7 for closed vegetation canopies, although it is highly sensitive to atmospheric
water vapour and aerosol optical depth when derived from AVHRR channels 1 and 2
(Holben, 1986; Justice e t a l., 1991). It also shows substantial sensitivity to soil
background effects where canopy cover is sparse as in some savannas and steppes
(Huete, 1988). Notwithstanding atmospheric and background effects, NDVI time-series
data have found many uses in land-cover change studies (Eastman and Fulk, 1993;
Lambin and Erlich, 1997; Fuller, 1998) and their application in fire studies is consistent
with damage to green vegetation canopies that occurs as a result of burning. 

Theory suggests that change in NDVI is inversely related to the area burned (Figure
4) provided there is high contrast between burned and unburned surfaces and that at
least 20% of the pixel has been burned (Razafimpanilo et al., 1995). Razafimpanilo et al.
(1995) modelled NDVI changes due to burning over a range of water vapour concen-
trations, solar elevation angles and view angles. The authors also found that for NDVI
calculated from top-of-atmospheric (TOA) reflectances, a decrease of about 0.65 NDVI
units may be expected if the pixel was entirely green before the fire and entirely burned
after. The results from this study are encouraging for a number of reasons. First, forest
vegetation is largely green before fires and the amount of change in NDVI (∆NDVI)
expected from high aerosol optical depths and precipitable water vapour will be sub-
stantially less than a complete burn. Model simulations also suggest that threshold
application does not require detailed atmospheric correction and that the relationship
between area burned within a pixel and NDVI is not substantially affected by view
angle, solar elevation, or atmospheric water vapour content. Finally, it may be possible
to retrieve subpixel burned area by making certain assumptions about the VI of
unburned canopies and soil background reflectance prior to fire events. These results
all suggest that reasonable thresholds using channels 1 and 2 of the AVHRR may be

Figure 4 Theoretical relationship between the fraction (expressed as
percentage) of an AVHRR pixel burned and NDVI for a pixel covered
by green vegetation
Source: Adapted from Razafimpanilo et al., 1995



554 Satellite remote sensing of biomass burning with optical and thermal sensors

established to distinguish burned and unburned pixels in forested regions. 
Several empirical studies support the theoretical work by Razafimpanilo et al. (1995).

For example, Kasischke and French (1995) showed that ∆NDVI selected over key
periods in Alaskan taiga allowed for detection of 96% of large burns over 20 000 ha in
size (i.e., approximately equivalent to a contiguous block of 200 AVHRR HRPT pixels)
and 83% of all burns less than 20 000 ha. Fernandez et al. (1997) also used an NDVI dif-
ferencing approach to detect medium-sized (> 400 ha) burns in Spain. They found that
a regression approach, which establishes a relationship between pre- and postburn
NDVI within 100 km × 100 km windows, produced slightly better results than a simple
d i ff e rence threshold. Overall, the authors found that both techniques pro v i d e d
adequate estimation of burned area in Mediterranean vegetation.

Further, Barbosa et al. (1998) also tested a number of different compositing methods
in addition to the maximum value of NDVI, which is so widely used to screen pixels
with off-nadir views, clouds and other atmospheric effects (Holben, 1986). They found
that seven-day minimum value composites of albedo and NIR (i.e., from AVHRR
channel 2) produced better images than NDVI composites for discriminating burned
from unburned areas in four humid savanna regions of Africa. The results are
interesting since the authors used coarse-resolution, 5 km global-area coverage (GAC)
data and validated their results with high spatial resolution data with Landsat TM
imagery.

3 Observations in the middle infrared 

Despite encouraging results obtained with NDVI time series, Pereira (1999) recently
compared NDVI against a set of other vegetation indices and found that it was less
suited for burned-area evaluation than the Global Environmental Monitoring Index
(GEMI) or two new MIR-based indices. His work suggests that further improvements
in fire-scar detection and mapping can be realized by including MIR data, which are
becoming increasingly available from a range of sources. As indicated in Table 1, MIR
observations are currently produced by high spatial-resolution systems like Landsat
TM as well as the coarse-resolution systems such as Vegetation Instrument on SPOT-4
and the Along Track Scanning Radiometer (ATSR). Two recent studies using the ATSR-
1 by Eva and Lambin (1998a; 1998b) confirmed the fire-scar mapping utility of the 1.6
µm waveband from this instrument through comparison with other remotely sensed
data from Landsat TM and NOAA-AVHRR. In another study, Eastwood et al. (1998)
utilized TM data covering boreal forest stands to simulate the SPOT-Vegetation MIR
waveband for fire-scar detection. The results of their study were compared against fire
maps produced by the Canadian Forest Service and showed that the MIR waveband
gave a more reliable indication of fire scars than approaches based on vegetation
indices. Moreover, MIR reflectance over boreal fire scars changed at a slower rate than
changes in the visible and NIR wavebands, which suggests that tracking changes in
MIR reflectance may lead to improved monitoring of postfire recovery. Further study of
the physical basis of MIR reflectance from fire scars (e.g., bidirectional effects, chemical
contents and refractive indices) should help advance general understanding on how
MIR observations relate to postfire recovery of plant communities.
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IV The spatial nature of biomass burning

Fire monitoring from space is playing a growing role in assessment of fire spread, form
and shape as they relate to different landscapes (Chuvieco and Martín, 1994; Chuvieco,
1999). Through spatial analysis of burning patterns, understanding of the relative
importance of variables controlling fire risk and spread (e.g., vegetation type, fuel
moisture, topography and weather) may be improved (Chuvieco and Congalton, 1989).
In areas where flammable fuels are common such as the western USA, the
Mediterranean Basin and Australia (Whelan, 1995), concerns about rapid spread of fire
have led to the development and application of fire-spread models such as FARSITE
(Finney and Ryan, 1995) and BEHAVE (Burgan and Rothermel, 1984). Remotely sensed
images or maps can be used either as model inputs or to assess the performance of
simulation model outputs (Clarke et al., 1994). For example, fire spread over several
weeks may be followed over broad areas using single AVHRR thresholds as done by
Chuvieco and Martín (1994) in Spain. However, since fire-spread and hazard models
are most often developed for application to relatively small regions (e.g., 1:1 000 000 or
greater), model validation is generally carried out using high-resolution imagery such
as Landsat or SPOT data rather than AVHRR data.

Remote-sensing studies have also emphasized the mapping of burned area as a
means to derive improved scaling and estimation of gaseous emissions and aerosols.
Several such studies suggest that the amount of area burned may not correspond well
to figures extrapolated from field studies (Scholes et al., 1996b; Eva and Lambin, 1998a).
For example, using the ATSR-1 data, Eva and Lambin (1998a) showed that the propor-
tional area burned in central Africa during the dry season of 1994–95 ranged from about
52% in Guinea–Congolian vegetation (subhumid to moist) to slightly more than 1% in
the Sahelian zone. These values are substantially less than earlier figures for African
savannas (~ 75% cited in Belward et al., 1994), which were based on one particular study
area of west Africa (Crutzen and Andreae, 1990). 

Empirically based modelling work by Scholes et al. (1996a; 1996b) represents one
attempt to link satellite observations of active fires, consumption of biomass, emissions
of particulates and emissions of trace gases CH4, CO and NOx. The authors used a
combination of Landsat MSS and AVHRR imagery to relate active fires observed over
southern Africa to the area burned. To accomplish this they derived a calibration factor
that accounted for the ratio of the scene fraction burned (from MSS image observations)
to the cumulative proportion of pixels in which active fires were detected by the
AVHRR. The calibration factor was not constant over southern Africa but varied as an
exponentially decreasing function of mean annual precipitation, with large fires found
in arid areas and small, numerous fires found in more humid locations. Scholes et al.
(1996b) then used the output from their biomass consumption model to estimate total
emissions of a given trace gas (Mgas,i,j) from

Mgas,i,j = ∑ Fi,j,k Egas,i,j

where Fi,j,k is the total amount of biomass burned per grid cell per month and Egas,i,j is
the emission factor for the gas, based on in situ measurements of gaseous fluxes. 

In Africa and other areas of variable precipitation (e.g., the Mediterranean)
interannual variability of fuel production may explain discrepancies in estimates of
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burned area. For example, Eva and Lambin (1998a) surmised that interannual variation
in biomass burning in Africa is probably low. However, since most ecological and
remote-sensing studies generally track vegetation conditions over one year or less,
studies of interannual fire variability are rare. An exception is the study by Kendall et
al. (1996), who used AVHRR 1 km imagery covering southern Africa and found
substantial differences in fire extent between 1989 (relatively wet year) and 1992 (a
drought year). Although rainfall explained some of the variation in fire numbers, the
authors noted much unexplained variation, with an increase between 1989 and 1992 in
some dry savannas of Zambia, Mozambique and Tanzania and a decrease in wet
savannas of eastern Congo, Zimbabwe and the Okavango Delta of Botswana.

Whereas interannual variability of burned area may be considered low in African
savannas the same is probably not true of moist tropical forests. For example, Cochrane
et al. (1999) showed that 90% of forest burning in eastern Amazonia occurred during
ENSO-related drought events of 1983, 1992 and 1997. Using multitemporal Landsat TM
data, they found that between 23 and 45% of their study areas burned during the ENSO
years of 1992 and 1997, which is generally less than the reported proportional area of
savanna burning in Africa. However, gaps in the Landsat TM data apparently did not
permit the authors to make any firm conclusions about whether Amazonian fires are
growing more extensive with successive ENSO events (Cochrane et al., 1999).

In contrast to some savannas, studies of boreal forest fires with satellite sensors
suggest that the areas burned may be much larger than previously thought (Kasischke
and French, 1995; Kasischke et al., 1999). In particular, AVHRR data have detected a
number of very large fire scars (> 30 000 ha) in Alaska and in Siberia, which were
previously unobserved owing to their remote locations. By comparing their results
from the AVHRR with historical records, Kasischke and French (1995) have also
indicated that fire extent has tended to increase in Alaska over the past three decades,
a result which may be linked to the increased occurrence of warmer, dryer summers.
The continued addition of greenhouse gases from biomass burning and industrial and
transportation sources is therefore expected to create a positive feedback with greater
warming at the higher latitudes, longer growing seasons, more fuel production and
hence more intense and extensive fires in boreal forests. Remote sensing using current
and future satellite platforms will continue to play an important role in identification of
areas affected in the boreal zone and should enable improved assessment of burning
trends there.

V Conclusions: towards global fire monitoring with satellite remote sensing

The spatial variability and ephemeral nature of fires make it difficult to generalize
about their extent and frequency and thus their impact on the biosphere and
atmosphere. In the past, the most common method to estimate the magnitude of the
flux of trace gases from biosphere to atmosphere involved extrapolation of small-area
measurements to entire communities and biomes. However, errors can propagate
quickly in global calculations of emissions from fires that may move across landscapes
unpredictably and often consume heterogeneous fuels. As Malingreau et al. (1993) have
outlined, the basic requirements to derive improved global estimates emissions from
f i re include spatially re f e renced and temporally continuous data on vegetation
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conditions, occurrence and type of fire and the amount of burned biomass. Of all
available technologies, satellite remote sensing has the greatest potential to meet these
information needs. 

High-resolution systems such as SPOT and Landsat may present some of the same
problems posed by spatial extrapolation of results from field investigations owing to
their limited extent and low temporal resolution (Cochrane et al., 1999). Coarse-
resolution, multitemporal systems such as the AVHRR, DMSP-OLS, SPOT Vegetation
and MODIS must therefore be used to derive global estimates of burning. Attempts to
develop a global system based largely on AVHRR observations have been made under
the auspices of the International Geosphere–Biosphere Programme (IGBP). Since 1992,
IGBP has convened a Fire Working Group (FWG) that has been working to develop a
community consensus on fire algorithms and data inputs. Following recommendation
from the FWG, a global fire product has been developed using 18 months of daily
AVHRR data, which is currently undergoing evaluation (Dwyer et al., 1997; Grégoire et
al., 1997). In addition, new algorithms and thresholds are being developed in the
context of MODIS implementation (Kaufman et al., 1998). However, few studies (Setzer
and Pereira, 1991) have attempted detailed field validation of their results, which again
is made difficult by the transitory nature of fire. One potential, but underutilized source
for validation on fire temperatures and emissions is gas flares from oil refineries
(Kaufman et al., 1998). Other sources are needed to validate current and future fire
mapping algorithms in a range of environments. 

Large-scale field experiments such as SAFARI-92 (Southern Africa Fire-Atmosphere
Research Initiative – 1992) and SCAR-C (Smoke, Clouds and Radiation – California),
which emphasized the integration of emissions data and remote sensing (Levine, 1996),
are also expected to help advance validation efforts. The SAFARI-2000 field campaign,
which began in 1999 year, will replicate and expand upon the sites and measurements
made in the previous SAFARI-92 experiment. Such field experiments, however, are
costly and difficult to implement in remote areas with poor infrastructure and commu-
nications and therefore only a limited number can be performed. Nevertheless,
continued integration of data from new sensors with well studied sources such as the
AVHRR (e.g., Barbosa et al., 1998; Eva and Lambin, 1998b; Fuller and Fulk, 2000) will
permit validation in areas where detailed field observations are unavailable.

As more sensors are launched with MIR bands the potential for global mapping of
fire scars will continue to increase. For example, NOAA has recently launched another
AVHRR sensor that contains a MIR band (channel 3a) centred at 1.6 µm, although
according to a recent report data transmission problems have plagued this particular
satellite. Given the difficulties of remote measurement of fire temperatures and the
likelihood that the next generation of sensors will be affected by saturation, fire-scar
detection and mapping provide the best way to improve scaling of carbon flux and
study of interannual variation. While much current research has emphasized remote
sensing of fires and fire scars using optical and thermal sensors it is also important to
acknowledge the emergence of synthetic aperture radar (French et al., 1999) as a means
to map fire scars. When used in conjunction with validated fire maps and high-
resolution sources of optical data, radar has considerable potential to reveal burned
area in places where cloud cover is persistent, particularly in the lowland tropics, an
area of increasing interest in biomass burning and emissions studies.
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Note

1. The division of the electromagnetic spectrum into discrete portions is somewhat arbitrary, and
different authorities in remote sensing recognize different boundaries, particularly in the infrared
portions of the spectrum.
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