

.....

EVALUACIÓN DEL RIESGO EN BIOSEGURIDAD (ERB) COMITÉ DE ARTICULACIÓN INSTITUCIONAL (CAI)

De acuerdo a la normativa vigente (Decreto N° 353/008 de fecha 21 de julio de 2008 y textos modificativos Decretos N° 535/008 de fecha 3 de noviembre de 2008 y 280/009 de fecha 8 de junio de 2009), se presenta a continuación el informe final del análisis de la evaluación del riesgo correspondiente a la solicitud de autorización de maíz con los eventos combinados NK603XT25XDAS40278-9 para producción y uso comercial para consumo directo o transformación, Asunto N° 2020/7/9/1/9 del 11/02/20.

Montevideo, 29 de junio de 2021

El presente informe consta de las siguientes secciones:

- 1- Términos de referencia
- 2- Antecedentes
- 3- Conclusiones respecto a la inocuidad alimentaria
- 4- Conclusiones respecto a la seguridad ambiental
- 5- Anexos

1. TÉRMINOS DE REFERENCIA

La instancia de Evaluación del Riesgo en Bioseguridad (ERB) y el Comité de Articulación Institucional (CAI), fueron convocados por la Comisión para la Gestión del Riesgo (CGR) para analizar la evaluación de riesgo ambiental e inocuidad alimentaria asociado a la autorización para producción y uso comercial para consumo directo o transformación de maíz con los eventos combinados NK603XT25XDAS40278-9 (Acta CGR N° 237 del 19/02/20).

Los términos de referencia indican el análisis de la información relacionada al evento combinado *per se*, según las siguientes áreas: 1) caracterización e identificación molecular, 2) aspectos ambientales: flujo génico, capacidad de sobrevivencia e invasión de la planta transgénica o especies compatibles sexualmente, transferencia de genes planta-a-microorganismo, interacción con organismos no blanco y 3) aspectos de

I

inocuidad, alergenicidad, toxicidad, composición nutricional, efecto del procesamiento, nutrición animal.

Además de los aspectos estrictamente de bioseguridad en inocuidad y ambiente, los términos de referencia también indican la identificación de medidas técnicas de manejo que puedan ser aplicadas en un sistema de gestión de la coexistencia.

Los términos de referencia no incluyen el análisis de riesgos de los herbicidas asociados y sus metabolitos, así como tampoco estudios de eficacia.

2. **ANTECEDENTES**

Características que otorga el evento para el que se solicita autorización

La empresa DASAGRO URUGUAY S.A. presentó los datos regulatorios e información de referencia requeridos en el Formulario de Solicitud de Autorización para producción y uso comercial para consumo directo o transformación, correspondiente al Asunto N° 2020/7/9/1/9 del 11/02/20 (Anexo 1, disponible en la Oficina de Bioseguridad).

Se trata de maíz con los eventos combinados NK603¹, T25² y DAS40278-9³.

El evento NK603 expresa el gen cp4 epsps, que codifica la proteína 5-enolpyruvylshikimato-3-fosfato sintetasa (CP4 EPSPS) que confiere tolerancia al herbicida glifosato⁴.

¹ OECD ID: MON00603-6

² OECD ID: ACS-ZM003-2

³ OECD ID: DAS-40278-9

⁴ Híbridos de maíz transformados por ingeniería genética con el evento NK603 contienen un inserto con dos copias del gen 5-enol-pyruvylshikimato-3-fosfato sintetasa, proveniente de la bacteria Agrobacterium sp. cepa CP4 (cp4 epsps), que codifican las proteínas CP4 EPSPS y CP4 EPSPS L214P. Las secuencias de los genes cp4 epsps difieren en dos nucleótidos. Ambas proteínas CP4 EPSPS expresadas, son estructural y funcionalmente equivalentes (información que se verifica en Dossier). La proteína EPSPS es una enzima que participa en el proceso de síntesis del ácido shikímico involucrado en la biosíntesis de los aminoácidos aromáticos (fenilalanina, tirosina y triptófano). El glifosato (principio activo de la familia RoundUp de herbicidas de uso agrícola) inhibe a la enzima EPSPS endógena de la planta bloqueándose la biosíntesis de aminoácidos aromáticos. El gen cp4 epsps fue modificado logrando que la enzima EPSPS presente una disminución en la afinidad por la molécula de glifosato, haciendo a las plantas de maíz tolerante al glifosato. La proteína CP4 EPSPS transgénica es estructuralmente similar y funcionalmente idéntica a la enzima endógena de planta EPSPS pero con reducida afinidad por el glifosato. La introducción del gen cp4 epsps permite a las plantas de maíz producir aminoácidos aromáticos esenciales para el crecimiento y desarrollo en presencia de glifosato.

El evento T25 expresa el gen *pat* que codifica la proteína PAT que le confiere a las plantas de maíz tolerancia al herbicida glufosinato de amonio⁵.

El evento DAS40278-9 expresa el gen *aad-1*. El gen *aad-1* codifica la enzima ariloxialcanoato dioxigenasa-1 (proteína AAD-1) que confiere a la planta de maíz tolerancia al herbicida 2,4-D y a ciertos herbicidas de la familia de los "fop"⁶.

Autorizaciones previas a nivel nacional e internacional

El maíz NK603XT25XDAS40278-9 fue obtenido por cruzamiento convencional de los maíces parentales con los eventos individuales. Todos los eventos individuales que contiene, NK603, T25 y DAS40278-9, han sido analizados previamente por la autoridad competente, ya sea en forma individual y combinados entre ellos o con otros eventos. Han sido autorizados por el GNBio para ensayos bajo condiciones controladas de bioseguridad y para su producción y uso comercial según se indica en el cuadro 1.

El Cuadro 2 indica los países que han autorizado los eventos NK603, T25 y DAS40278-9 en forma individual o combinada, para su cultivo y/o consumo humano y animal.

Cuadro 1: Autorizaciones en Uruguay por la autoridad competente de los eventos NK603XT25XDAS40278-9 en forma individual y/o combinados.

Especie/Evento	Uso solicitado	Autorización GNBio
Maíz NK603	Comercial	21/06/2011
Maíz M0N810XNK603	Comercial	21/06/2011
Maíz TC1507XNK603	Comercial	19/09/2012
Maíz M0N89034XTC1507XNK603 (*) MON89034	Comercial	21/09/2012

⁵ Híbridos de maíz transformados por ingeniería genética con el evento T25 expresan el gen pat proveniente del hongo de suelo *Streptomyces viridochromogenes*. El gen pat codifica la enzima fosfinotricin acetiltransferasa (proteína PAT) que produce una acetilación sobre el herbicida glufosinato de amonio inactivándolo. El glufosintao inhibe a la enzima glutamino sintasa provocando acumulación de amonio en los tejidos de la planta lo cual es tóxico y determina su muerte. El evento T25 permite a las plantas de maíz mantener su metabolismo celular en presencia de glufosinato.

⁶ Híbridos de maíz transformados por ingeniería genética con el evento DAS40278-9 expresan el gen aad-1 proveniente de la bacteria de suelo Sphingobium herbicidovorans. El gen aad-1 codifica la proteína AAD-1 que corresponde a la enzima ariloxialcanoato dioxigenasa-1 la cual degrada el herbicida 2,4-D (ácido 2,4-dichlorofenoxiacético, auxina sintética utilizada como herbicida sistémico hormonal) en 2,4-diclorofenol (DCP), sustancia inactiva como herbicida. A su vez, la enzima AAD-1 es capaz de convertir ciertos herbicidas de la familia de los "fop", como el haloxifop, en sus correspondientes fenoles sin actividad herbicida (Ref. en Anexo 1).

MON89034XTC1507		
MON89034XNK603		
Maíz MON810XTC1507XNK603	Comercial	15/12/2017
		00/10/2010
Maíz NK603	Investigación	08/10/2010
Maíz M0N810XNK603	Investigación	08/10/2010
Maíz M0N89034XNK603	Investigación	19/09/2012
Maíz MON89034XNK603XTC1507XDAS40278-9	Investigación	14/02/2014
Maíz TC1507XMON810XNK603	Investigación	15/12/2017
Maíz NK603	Ensayos INASE	31/08/2009
Maíz TC1507XNK603	Ensayos INASE	31/08/2009
Maíz M0N810XNK603	Ensayos INASE	08/10/2010
Maíz M0N89034XTC1507XNK603	Ensayos INASE	19/09/2012
Maíz MON89034XNK603XTC1507XDAS40278-9	Ensayos INASE	14/02/2014
Maíz TC1507XMON810XNK603	Ensayos INASE	13/10/2015

Cuadro 2. Autorizaciones en otros países de los eventos NK603, T25 y DAS40278-9 en forma individual o combinada, para su cultivo y/o consumo humano y animal. Autorización comercial implica que tiene autorización para su cultivo, consumo humano y animal.

Evento	Autorización comercial	Autorización consumo humano y animal
	Estados Unidos (2000)	México (2002)
	Canadá (2001)	Unión Europea (2004)
	Japón (2001)	Corea (2004)
NIZCO2	Sud África (2002)	China (2005)
NK603	Argentina (2004)	El Salvador (2009)
	Filipinas (2005)	
	Brasil (2008)	
	Uruguay (2011)	
	Argentina (1998)	Australia (2002, consumo humano)
	Brasil (2007)	China (2012)
	Canadá (1997)	República de Corea (2013)
T25	Colombia (2012)	Malasia (2013)
	Unión Europea (1998)	México (2007)
	Japón (2004)	Rusia (2011)
	Estados Unidos (1995)	Sudáfrica (2001)
		Provincia de Taiwán (2001, consumo
		humano)

DAS40278-9	Estados Unidos (2011) Canadá (2012)	Japón (2012)	
NK603XT25	Japón (2009) Canadá (2010) Brasil (2015)	México (2010, humano) Filipinas (2010) República de Corea (2011) Provincia de Taiwán (2011, humano) Colombia (2012) Unión Europea (2015) Sudáfrica (2016) Zambia (2017, animal)	
DAS40278-9X NK603	Canadá (2013) Japón (2013) Brasil (2015) Argentina (2018)	México (2013, humano) Provincia de Taiwán (2013, humano) República de Corea (2015, huma	

Alcance del uso solicitado

Se solicita autorización para producción y uso comercial para consumo directo o transformación de maíz conteniendo los eventos combinados NK603XT25XDAS40278-9.

Proceso del análisis efectuado

De acuerdo a los términos de referencia, correspondió la participación de todas las instituciones del CAI: Ministerio de Ganadería, Agricultura y Pesca (MGAP), Ministerio de Vivienda, Ordenamiento Territorial y Medio Ambiente (MVOTMA), Ministerio de Salud Pública (MSP), Instituto Nacional de Investigaciones Agropecuarias (INIA), Instituto Nacional de Semillas (INASE), Universidad de la República (UdelaR), Laboratorio Tecnológico del Uruguay (LATU), e Instituto de Investigaciones Biológicas Clemente Estable (IIBCE) e Instituto Pasteur de Montevideo (IP).

El proceso consistió en el análisis de la información brindada por el solicitante en el dossier, revisión de la bibliografía e información adicional presentada por el solicitante (Anexo 1).

Por tratarse de una solicitud con eventos combinados, cuyos eventos individuales fueron todos analizados por los evaluadores en solicitudes anteriores, se caracterizó el riesgo basado en la probabilidad de interacción entre las proteínas de los eventos individuales. Se analizó información del modo de acción de las proteínas, la estabilidad de los eventos y su expresión. A su vez, se hizo una revisión de los informes ERB-CAI elaborados para estos eventos para diferentes usos y se recopiló y analizaron informes de decisión oficiales publicados por otros países.

Para la realización del análisis, se conformó un Grupo de Trabajo para el análisis de la interacción (GTI), conformado por al menos un especialista de cada uno de los cuatro grupos *ad hoc* (caracterización e identificación molecular (GAHCIM), salud humana y animal (GAHSHA), flujo génico (GAHFG) e impacto sobre organismos no blanco (GAHONOB)).

Finalmente, teniendo en cuenta el informe del GTI (Anexo 2) y los informes del CAI (Anexos 3 al 8), la ERB elaboró las conclusiones del análisis realizado que figuran en las secciones 3 y 4 de este informe.

La ERB recibió la opinión de las siguientes instituciones del CAI que participaron del análisis, cuyos informes figuran en los anexos de este informe: MGAP (Anexo 3), MA (Anexo 4), INIA (Anexo 5), INASE (Anexo 6), LATU (Anexo 7) e IP-Montevideo (Anexo 8).

3. CONCLUSIONES RESPECTO A LA INOCUIDAD ALIMENTARIA

En el informe del GTI (Anexo 2) y en los informes CAI presentados (Anexos 3 al 8), se indica que los eventos individuales fueron evaluados como seguros, no existe evidencia que indique que puedan tener efectos adversos a la salud humana y animal en ninguna de las características estudiadas (aspectos nutricionales, de alergenicidad y de toxicidad) en comparación con la planta no modificada. Por otra parte, tampoco hay razones para creer que la presencia simultánea de las nuevas proteínas expresadas en el evento combinado pudiera implicar una preocupación en este mismo sentido, y por tanto se considera que no existe una hipótesis de riesgo que justifique la evaluación de la inocuidad alimentaria en el evento combinado.

Se caracteriza un riesgo no significativo en cuanto a la inocuidad del uso de este evento para la producción y uso comercial para consumo directo o transformación.

4. CONCLUSIONES RESPECTO A LA SEGURIDAD AMBIENTAL

Interacciones de los productos génicos en el evento combinado.

El evento combinado en maíz NK603XT25XDAS40278-9, fue obtenido por cruzamiento convencional entre líneas de maíz portadoras de los eventos individuales.

Se analizó el modo de acción de las proteínas expresadas, la información que confirma la estabilidad y expresión de los eventos combinados (Anexos 1 y 2).

Cuando un evento combinado es originado por cruzamiento convencional entre eventos individuales que tienen comprobada su estabilidad, el ADN insertado se transfiere de forma similar que los genes endógenos, no ocurriendo eventos de recombinación adicionales (Anexos 1, 2 y 5).

A su vez, dado el conocimiento exhaustivo de los modos de acción de las proteínas expresadas, y la independencia de cada ruta metabólica, es posible indicar que no se esperan interacciones entre las proteínas de nueva expresión presentes en el evento combinado.

En tal sentido, no se espera una modificación en sus características reproductivas, de diseminación o supervivencia respecto a su contraparte convencional, que permita establecer una hipótesis de riesgo vinculada a la capacidad de transformarse en una maleza o planta invasora de hábitats naturales.

Del mismo modo, la ausencia de interacción entre las proteínas del evento combinado, no modifica las características de flujo vertical u horizontal de genes del maíz, así como el impacto sobre organismos no blanco.

Se incluyen a continuación, aspectos generales del maíz tenidos en cuenta para el análisis de posibles interacciones:

- El maíz está altamente domesticado siendo difíciles su diseminación y supervivencia sin la intervención del hombre. La especie no tiene características que la clasifiquen como invasora, maleza o potencial maleza. Las características morfológicas de la inflorescencia y el manejo del cultivo hacen que sea muy baja la probabilidad de ocurrencia de plantas creciendo en forma silvestre. Si se cumplen ciertas condiciones ambientales de temperatura y humedad puede darse su crecimiento como planta voluntaria al año siguiente de su cultivo. Sin embargo, no suele sobrevivir si queda en el campo durante el invierno y en caso de ocurrir su establecimiento puede ser controlado mecánica o químicamente con graminicidas específicos.
- Este maíz combina eventos que confiere la característica de tolerancia a herbicidas que de por sí no confiere una ventaja competitiva al maíz que adquiera comportamiento de maleza o planta invasora de hábitat naturales. Existirá una ventaja competitiva en aquellos ambientes donde se aplique el herbicida para el cual el evento confiere tolerancia.

- Con respecto a la probabilidad de flujo génico planta-a-planta (transferencia vertical de genes), el maíz es una especie esencialmente de polinización cruzada típicamente anemófila por lo que se debe considerar en especial el riesgo de flujo génico a través del polen. Posibles formas de exposición del evento combinado a través del polen en floración incluyen: cruzamientos con especies emparentadas y compatibles, con cultivares no genéticamente modificados y con plantas voluntarias de un cultivo previo. De estas posibilidades, el primer caso implicaría un riesgo para la biodiversidad y en especial si existieran especies emparentadas que son malezas del cultivo. Sin embargo, se verificó que el riesgo de cruzamiento con especies locales emparentadas no es considerable para nuestro país por no existir especies relativas emparentadas que representen un riesgo para el cruzamiento⁷.
- El impacto de cruzamientos con híbridos no genéticamente modificados o variedades de se discute en el marco de la coexistencia.
- La transferencia horizontal de genes desde la planta a microorganismos puede considerarse un proceso altamente improbable ya sea bajo condiciones naturales en el suelo o en el tracto digestivo de humanos y animales. De ocurrir la transferencia de genes hacia hongos y que los genes se expresen, no conferirían una ventaja de selección y no cambiaría el pool de genes por ya estar presentes en la microflora del suelo o ser común en la naturaleza (Anexo 1).
- Respecto a la característica de tolerancia a herbicidas, se hace notar que si bien esta característica aporta al productor flexibilidad en el uso de los herbicidas, el mal uso de estos puede determinar el desarrollo de malezas resistentes, no siendo la tecnología transgénica per se la que genere posibles efectos adversos al ambiente, sino el manejo de los herbicidas siendo necesario disponer de los mecanismos de control para una correcta aplicación con el objetivo de minimizar la aparición de poblaciones de malezas resistentes (Anexos 1 y 5).

_

⁷ Zea mays (Andropogoneae) es una especie originada y domesticada en dos centros independientes posiblemente, México y Andes centrales (Perú) (Purseglove 1981, Tovar 1993). La flora de gramíneas para Uruguay comprende aproximadamente 17 géneros de la tribu Andropogoneae (Burkart 1969, Rosengurtt et al. 1970, Zuloaga et al. 1994), que no incluyen especies relativas emparentadas que representen riesgo para el cruzamiento. Las especies más cercanas taxonómicamente son las especies del género Sorghum y Coix. El primero de ellos incluye especies cultivadas principalmente para alimentación de animales. Algunas de ellas son utilizadas como borde del cultivo de maíz para captar polen, actuando como trampa de polen y evitando la dispersión del mismo a mayor distancia del cultivo. Coix es un género que es incluido por algunos autores junto a Zea y otros seis géneros de Asia y América tropical en la tribu Maydeae (Rosengurtt et al. 1970, Burkart 1969). En Uruguay se cultiva escasamente la especie Coix lacrymajobi, de origen asiático, cuyo fruto es utilizado para la confección de artesanías. (GAHFG).

Del análisis realizado sobre medidas técnicas para garantizar la coexistencia se concluye que es posible la aplicación de medidas de aislamiento físico y/o temporal⁸. Dichas medidas deben ajustarse en función de: las condiciones ambientales 9 y el umbral de tolerancia de presencia de eventos transgénicos autorizados, lo cual dependerá de cada situación. Se vio posible la aplicación de los criterios de aislamiento utilizados en producción de semilla. La dispersión del polen por el viento y la frecuencia de cruzamientos no debería ser diferente a la que pueda ocurrir en variedades de maíz convencionales para las cuales por ejemplo se aconsejan 300 m de distancia de aislamiento para los ensayos de de semilla 10 producción menores hectáreas (http://www.inase.org.uy/files/docs/25BB79E6854C90F0.htm). Estas medidas se corresponden con estándares equivalentes a los vigentes en el sistema OECD de certificación de semilla.

Por otro lado, se identificó como principal fuente de exposición, la mezcla física en siembra, maquinación, transporte, almacenaje y procesamiento para lo cual se hace necesario un sistema de trazabilidad en la producción de semilla o grano que garantice la segregación del producto.

Informes CAI:

En base al análisis de la información realizado por el GTI y el CAI, las instituciones: MGAP, INIA, INASE, LATU e IP-Montevideo, informaron a la ERB que no identifican un riesgo significativo asociado a la producción y uso comercial para consumo directo o transformación de maíz conteniendo los eventos combinados NK603XT25XDAS40278-9 (Anexos 3 y 5 al 8 respectivamente).

Por su parte, el MA no concluye respecto al riesgo en bioseguridad de los aspectos analizados de ambiente e inocuidad. El informe del MA analiza la coexistencia y se sugieren medidas de mitigación (Anexo 4). La información que se incluye en el informe

_

⁸ Entre las medidas de aislamiento se incluyen: distancia absoluta entre cultivos, barreras intermedias con otro cultivo (por ejemplo sorgo) o hileras del cultivo para atrapar el polen, desfasaje en las fechas de siembra, desfasaje en los ciclos de los cultivos para evitar coincidencia en la etapa de polinización.

⁹ El ajuste de las medidas de aislamiento físico debe realizarse para el ambiente donde será liberado el evento genéticamente modificado. La aerodinámica del polen está condicionada por la forma y extensión del cultivo, las condiciones ambientales (especialmente los vientos) y la topografía del lugar. A su vez, el grado de cruzamiento entre las plantas va a estar condicionado además por aspectos biológicos y funcionales, como la duración de la viabilidad del polen y del período de receptividad de los estigmas. Estas características, además de tener un componente genético, se ven afectadas por factores ambientales, especialmente la temperatura y humedad ambiente (GAHFG).

del MA sobre coexistencia, fue discutida en el ámbito del GAHFG y se acordó no incluirla en los informes de eventos puntuales, ya que es un tema transversal a todos los maíces. En caso de una solicitud de análisis de la coexistencia, se realizará el análisis caso a caso, según se establece en los informes de la CGR y Resoluciones del GNBio que indican "Que, frente a posibles solicitudes de regulación de coexistencia entre diferentes sistemas de producción, de acuerdo a la definición dada por el Decreto 353/008, éstas sean puestas a consideración de la CGR".

Por otro lado, INIA hace un comentario entendiendo necesario realizar la advertencia de que previo a la liberación comercial de cultivares con este evento, se estudie e implemente por parte de los organismos competentes, mecanismos que eviten la ocurrencia de daños económicos y/o ambientales relacionados al uso de formulaciones del herbicida 2.4 D o condiciones de uso inadecuadas (Anexo 5).

La ERB concluye:

Al no ser esperables en la planta nuevos productos derivados de interacciones entre las proteínas, no se identifica un posible daño al ambiente del evento combinado en comparación a los eventos individuales ya analizados que se consideraron seguros.

De las consideraciones expuestas, antecedentes y evidencias disponibles, se caracteriza un riesgo no significativo para el ambiente asociado a la producción y uso comercial para consumo directo o transformación de maíz con los eventos combinados NK603XT25XDAS40278-9.

5. ANEXOS

- 1. Formulario de Solicitud de Autorización de maíz NK603XT25XDAS40278-9 para producción y uso comercial para consumo directo o transformación (el dossier completo se encuentra disponible en la Oficina de Bioseguridad).
- 2. Informe Grupo de Trabajo Interacciones (GTI)
- 3. Informe CAI-MGAP
- 4. Informe CAI-MA
- 5. Informe CAI- INIA.
- 6. Informe CAI- INASE.
- 7. Informe CAI- LATU.
- 8. Informe CAI- IP-Montevideo.

Ing. Agr. PhD Alejandra Ferenczi Evaluación de Riesgos en Bioseguridad (ERB) Coordinadora

10