

COMISION PARA LA GESTION DEL RIESGO (CGR) MGAP MVOTMA MSP MEF MIEM MRREE

Informe del Laboratorio Tecnológico del Uruguay (LATU), integrante del COMITÉ DE ARTICULACION INSTITUCIONAL (CAI), según los Términos de Referencia para el análisis de la evaluación del riesgo. Decreto 353/008 y Textos Modificativos Decretos 535/008 y 280/009

A. INFORMACIÓN GENERAL

A.1. ESPECIE

Nombre común: Maíz

Nombre Científico: Zea Mays L.

A.2. EVENTO

Denominación del evento o de los eventos de transformación según el sistema de denominación de la OECD y/o identificador único otorgado por la Secretaría de la CBD:

MON87427XMON89034XMON810XMIR162XMON87411XMON87419: MON-87427-7 X MON-89034-3 X MON-00810-6 X SYN-IR162-4 X MON-87411-9 X MON-87419-8

A.3. DENOMINACIÓN COMERCIAL DEL EVENTO

Aún no definido.

A.4. EN EL CASO DE EVENTOS APILADOS

Se trata de seis eventos combinados por cruzamiento convencional. Los eventos individuales: MON89034, MON810 y MIR162 han sido analizados previamente por la autoridad competente. Se indica en el cuadro a continuación la Resolución del GNBio para cada evento individual:

COMISION PARA LA GESTION DEL RIESGO (CGR) MGAP MVOTMA MSP MEF MIEM MRREE

Informe del Laboratorio Tecnológico del Uruguay (LATU), integrante del COMITÉ DE ARTICULACION INSTITUCIONAL (CAI), según los Términos de Referencia para el análisis de la evaluación del riesgo. Decreto 353/008 y Textos Modificativos Decretos 535/008 y 280/009

A. INFORMACIÓN GENERAL

A.1. ESPECIE

Nombre común: Maíz

Nombre Científico: Zea Mays L.

A.2. EVENTO

Denominación del evento o de los eventos de transformación según el sistema de denominación de la OECD y/o identificador único otorgado por la Secretaría de la CBD:

MON87427XMON89034XMON810XMIR162XMON87411XMON87419: MON-87427-7 X MON-89034-3 X MON-00810-6 X SYN-IR162-4 X MON-87411-9 X MON-87419-8

A.3. DENOMINACIÓN COMERCIAL DEL EVENTO

Aún no definido.

A.4. EN EL CASO DE EVENTOS APILADOS

Se trata de seis eventos combinados por cruzamiento convencional. Los eventos individuales: MON89034, MON810 y MIR162 han sido analizados previamente por la autoridad competente. Se indica en el cuadro a continuación la Resolución del GNBio para cada evento individual:

Evento	Tipo de aprobación	N° Resolución	
MON89034 individual y	Comparaial	Res GNBio 48/2012	
combinado con otros eventos	Comercial	Res GNBio 72/2017	
MON810 individual y combinado con otros eventos	Comercial	2003 (Decreto 249/000)	
		Res GNBio 31/2011	
		Res GNBio 75/2017	
MIR162 individual y combinado con otros eventos	Comercial	Res GNBio 47/2012	

A.5. CARACTERISTICA/S INTRODUCIDAS

El maíz apilado MON87427XMON89034XMON810XMIR162XMON87411XMON87419 provee protección contra ciertos insectos Lepidópteros y Coleópteros plaga y tolerancia a la aplicación de herbicidas a base de glifosato, glufosinato de amonio y dicamba. El mismo fue obtenido mediante cruzamiento convencional de los siguientes eventos parentales:

- MON87427: expresa la proteína CP4 EPSPS (5-enolpiruvilshiquimato-3-fosfato sintasa) que otorga el fenotipo de tolerancia a herbicidas a base de glifosato. Esta tolerancia es tejido-selectiva, la proteína CP4 EPSPS no se expresa en los tejidos reproductivos masculinos confiriendo el fenotipo de androesterilidad que sería inducido con la aplicación de herbicidas a base de glifosato.
- MON89034: expresa las siguientes proteínas
 - o CRY1A.105 que proveen protección contra Lepidópteros plaga.
 - o CRY2Ab2 que proveen protección contra Lepidópteros plaga.
- MON810: expresa la proteína CRY1Ab que provee protección contra insectos lepidópteros plaga.
- MIR162: expresa las siguientes proteínas,
 - VIP3Aa20 que provee protección contra ciertos insectos Lepidópteros plaga con un mecanismo de acción diferente a las proteínas Cry.
 - o PMI (manosa-6-fosfato isomerasa) que es una enzima utilizada como marcador de selección en el proceso de generación del evento.
- MON87411: expresa las siguientes proteínas y ARN,
 - o CP4-EPSPS que otorga tolerancia a herbicidas a base de glifosato.

- CRY3Bb1 que provee protección contra ciertos insectos coleópteros plaga de la familia Chrysomelidae.
- Este evento también expresa una secuencia con repeticiones invertidas de un gen vital de Diabrótica que permite el control de Diabrótica a través del mecanismo de ARN de interferencia (ARNi).
- MON87419: expresa las siguientes proteínas
 - DMO (dicamba mono-oxigenasa) que otorga tolerancia a herbicidas a base de dicamba (ácido 3,6-dicloro-2-metoxi benzoico)
 - PAT (fosfinotricina acetiltransferasa) que provee tolerancia a herbicidas que contienen glufosinato de amonio.

A.6. TIPO DE LIBERACIÓN SOLICITADA

- Liberación a escala de campo en condiciones controladas:
 - Evaluación de cultivares por INASE (de acuerdo a lo dispuesto por el articulo 44 y siguientes de la Ley 16811 del 21 de febrero de 1997 en su nueva redacción dada por la Ley 18467 del 27 de febrero de 2009).

A.7. SOLICITUDES DE AUTORIZACIÓN EN PROCESO PRESENTADAS EN OTROS PAÍSES

No se presentó esta información. Se indica a Argentina como país que autorizó ensayos a campo bajo condiciones controladas de bioseguridad en el año 2016 y 2017.

A.8. SOLICITUDES AUTORIZADAS EN OTROS PAÍSES

Evento	País con aprobación para cultivo (incluye consumo humano y animal)	País con aprobación para consumo humano y animal
MON87427XMON89034X MON810XMIR162XMON87 411XMON87419		Japón (2016)
MON87427XMON89034X MIR162XMON87411	Canadá (2016) Estados Unidos (2017) Japón (2017)	Corea (2017) México (2017)

PAISES EN LOS QUE SE ESTÁ COMERCIALIZANDO EL OVGM:

Los eventos parentales, son comercializados en numerosos países como parte de diferentes productos acumulados. Se indica en el dossier que la acumulación de los 6 eventos no ha sido comercializada aún.

A.9. AUTORIZACIONES DENEGADAS EN OTROS PAÍSES:

No se ha negado en ningún país.

B. <u>TÉRMINOS DE REFERENCIA PARA EL ANÁLISIS DE LA EVALUACIÓN DEL RIESGO</u> EN BIOSEGURIDAD.

La instancia de Evaluación del Riesgo en Bioseguridad (ERB) y el Comité de Articulación Institucional (CAI), fueron convocados por la Comisión para la Gestión del Riesgo (CGR) para analizar la evaluación de riesgos al ambiente e inocuidad alimentaria para un uso específico del evento *per se*.

El objetivo de los términos de referencia es brindar el marco de trabajo a los evaluadores de forma de elaborar un informe que contenga información que sirva para adoptar decisiones en torno a vegetales y sus partes genéticamente modificadas, caso a caso y de acuerdo al uso solicitado exclusivamente.

Las áreas temáticas a analizar son:

B1. CARACTERIZACIÓN E IDENTIFICACIÓN MOLECULAR

Para el análisis de caracterización e identificación molecular el grupo *AdHoc* GAHCIM se basó en el dossier, la información aportada por la empresa y bibliografía adicional consultada.

Se analizó cada evento individual que compone el apilado con énfasis en los que no habían sido evaluados anteriormente (eventos MON 87427, MON 87411 y MON87419) y en las interacciones de los genes insertados de los 6 eventos combinados basado en el análisis de las vías metabólicas involucradas.

La caracterización molecular mediante amplificación y secuenciación de los insertos correspondientes a los eventos individuales, así como las secuencias flanqueantes, señaló que todos se encuentran presentes e intactos en el maíz apilado (Robinson y Silvanovich, 2017) y determina que no existen nuevos rearreglos del genoma original en el sitio de inserción.

La información presentada para el evento MON 87427 demuestra la estabilidad del evento hasta la quinta generación.

En el caso del evento MON 87411 los datos presentados indican que se insertó una sola copia del vector en un solo locus. El análisis de estabilidad generacional por mapeo de secuencia y NGS / JSA demostró que el inserto en MON 87411 se ha mantenido a través de cinco generaciones (Carleton et al., 2014). En el análisis bionformático (Hileman y Silvanovich 2016b) no se encontraron similitudes

biológicamente relevantes entre las proteínas CP4 EPSPS y Cry3Bb1 y alérgenos, toxinas o proteínas biológicamente activas asociadas con efectos adversos a la salud animal o humana, así como tampoco se interrumpen genes endógenos de maíz.

El evento MON 87419 es estable y el análisis bioinformático indica que no hay similitudes biológicamente relevantes entre las proteínas DMO y PAT y alérgenos, toxinas o proteínas biológicamente activas asociadas con efectos adversos a la salud animal o humana.

En cuanto a las relaciones entre vías metabólicas, las proteínas Cry1A.105, Cry2Ab2, Cry1Ab, Vip3Aa20 y Cry3Bb1 confieren al maíz protección contra el ataque de ciertos insectos lepidópteros y coleópteros. Las proteínas Cry son entomotoxinas, no tienen actividad enzimática ni participan de rutas metabólicas en las plantas donde han sido expresadas.

La expresión de un cassette de supresión que genera ARN de doble cadena (ARNdc), denominado ARNdc DvSnf7, también ejerce su modo de acción al ser ingerido por el insecto blanco, desencadenando el silenciamiento de un gen vital del insecto, a través de un mecanismo de interferencia mediada por ARN (ARNi).

B2. ASPECTOS AMBIENTALES QUE PUEDAN DETERMINAR UN EFECTO ADVERSO SOBRE LA DIVERSIDAD BIOLÓGICA:

- Flujo génico a través del polen, incluyendo el análisis de medidas que atiendan a la gestión de la coexistencia.
- Transferencia de genes planta-a-microorganismos.
- Transformación en planta invasora.
- Transformación en maleza.
- Impacto sobre organismos no blanco que proporcionan funciones ecológicas o que son protegidas como autóctonas.

No corresponde la evaluación de este ítem por parte de nuestra Institución.

B3. ASPECTOS DE INOCUIDAD ALIMENTARIA (APTITUD PARA CONSUMO HUMANO Y ANIMAL):

El objetivo es identificar los posibles efectos nocivos sobre la salud humana y animal que pueden ocasionar los alimentos obtenidos de organismos de ADN recombinante.

- Aspectos nutricionales
- Evaluación de posible alergenicidad (Proteínas)
- Evaluación de posible toxicidad

La evaluación de los aspectos de inocuidad alimentaria se debe fundamentar en el documento "Directrices para la realización de la evaluación de la inocuidad de los alimentos obtenidos de plantas de ADN recombinante" del CODEX ALIMENTARIUS. Este enfoque se basa en el principio de que la inocuidad de los alimentos derivados de nuevas variedades de plantas, incluidas las de ADN recombinante, se evalúa en relación con un homólogo convencional que tenga un historial de utilización inocua.

Por tratarse de una solicitud de autorización para ensayos a campo con condiciones de bioseguridad, no se realiza el análisis en inocuidad ya que el material vegetal GM no será destinado a consumo humano y/o animal.

C. EVENTOS APILADOS

Por tratarse de un OVGM apilado, el análisis se focalizó en temas relacionados a la estabilidad, expresión y posibles interacciones entre los eventos apilados.

Ya fue descrito en el punto B.1

D. CARACTERIZACION DEL RIESGO

La evaluación del riesgo es el proceso que determina con la mayor exactitud posible, la probabilidad y las consecuencias efectivas de los riesgos que presenta la exposición a los peligros identificados.

Para los ítems indicados en la parte B, se analizará:

- a) Probabilidad de que dichos efectos adversos ocurran realmente, teniendo en cuenta el nivel y el tipo de exposición del probable medio receptor
- b) Consecuencias si dichos efectos adversos ocurriesen realmente
- c) Estimación del riesgo general planteado por el vegetal genéticamente modificado basado en la siguiente fórmula:

Riesgo= peligro y su probabilidad de ocurrencia x exposición y sus consecuencias.

d) Recomendación sobre si los riesgos son aceptables o gestionables o no, incluyendo, cuando sea necesaria, la determinación de estrategias para gestionar esos riesgos

Cuando haya incertidumbre acerca del nivel de riesgo, se podrá solicitar información adicional sobre cuestiones concretas y la información adicional solicitada debe estar vinculada a una HIPOTESIS DE RIESGOS que permita luego analizar dicha información en relación al peligro o su exposición.

		Probabilidad					
	- Harrie	Rara	Poco Probable	Posible	Muy Probable	Casi Segura	
Consecuencias	Despreciable	Bajo	Bajo	Bajo	Medio	Medio	
	Menores	Bajo	Bajo	Medio	Medio	Medio	
	Moderadas	Medio	Medio	Medio	Alto	Alto	
	Mayores	Medio	Medio	Alto	Alto	Muy Alto	
	Catastroficas	Medio	Alto	Alto	Muy Alto	Muy Alto	

Según el cuadro adjunto, LATU concluye que el riesgo caracterizado es bajo o insignificante dado que, en los aspectos analizados de caracterización molecular, no se identifica un efecto adverso para el ambiente o salud humana y animal.

E. COMENTARIOS

No tenemos comentarios adicionales.

Lic. Bioq. Fabiana Rey, MSc Delegado titular en el CAI

Q.F. Inés Martínez Delegado alterno en el CAI